Čes. slov. farm. 2022, 71(6):259-265 | DOI: 10.5817/CSF2022-6-259
Medicinal mushrooms Ophiocordyceps sinensis and Cordyceps militaris
- University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
The main component of Ophiocordyceps sinensis and Cordyceps militaris extracts are polysaccharides. These are natural biopolymers that represent a large class of biologically active components. These contribute to their pharmacological activity and effect on health. They contain monosaccharides that include rhamnose, ribose, arabinose, xylose, mannose, glucose, galactose, mannitol, fructose, and sorbose. The exopolysaccharide fraction has a large number of pharmacological effects, the two most important of which are immunomodulatory and antitumour. Among the contained polysaccharides is also mannoglucan, which shows weak cytotoxic activity against the SPC-I1) cancer cell line. More than ten nucleosides and their related compounds, including adenine, adenosine, inosine, cytidine, cytosine, guanine, uridine, thymidine, uracil, hypoxanthine, and guanosine, have been successively isolated from Ophiocordyceps sinensis. It contains many amino acids and polypeptides that are thought to affect the cardiovascular system. They also have a sedative and hypnotic effect, with tryptophan being the most effective component among them.
Polysaccharides were extracted from four samples: sample 1 (grown on the substrate Oryza sativa indica, strain Ophiocordyceps sinensis), sample 2 (grown on the substrate Oryza sativa japonica, strain Ophiocordyceps sinensis), sample 3 (grown on the substrate Oryza sativa indica, strain Cordyceps militaris), sample 4 (grown on Oryza sativa japonica substrate, strain Cordyceps militaris). Through NMR spectroscopy and subsequent comparison with the literature, the majority of a chemical compound in deproteinized extracts 1 and 4 was found to be a hydrophilic polyglucan referred to as CBHP2).
Keywords: Ophiocordyceps sinensis; Cordyceps militaris; NMR analysis; CBHP
Received: November 4, 2022; Accepted: October 14, 2022; Published: June 1, 2022 Show citation
References
- Zhang J., Wen Ch., Duan Y., Zhang H., Ma H. Advance in Cordyceps militaris (Linn) Link polysaccharides: Isolation, structure, and bioactivities: A review. Int. J. Biol. Macromol. 2019; 132, 906-914.
Go to original source...
Go to PubMed...
- NIE S. P., Cui S. W., Phillips A., Xie M. Y., Phillips G. O., Assaf S. A., Zhang X. L. Elucidation of the structure of a bioactive hydrophylic polysaccharide from Cordyceps sinensis by methylation analysis and NMR spectroscopy. Carbohydr. Polym. 2011; 84(3), 894-899.
Go to original source...
- NG T. B., Wang H. X. Pharmacological actions of Cordyceps, a prized folk medicine. J. Pharm. Pharmacol. 2005; 57(12), 1509-1519.
Go to original source...
Go to PubMed...
- Zhou, X., Gong Z., Su Y., Lin J., Tang K. Cordyceps fungi: natural products, pharmacological functions and developmental products. J. Pharm. Pharmacol. 2009; 61(3), 279-291.
Go to original source...
Go to PubMed...
- Sharma S. Trade of Cordyceps sinensis from high altitudes of the Indian Himalaya: Conservation and biotechnological priorities. Curr. Sci. 2004; 86(12), 1614-1619.
- Singh N., Pathak R., Kathait A. S., Rautela D., Dubey A. Collection of Cordyceps sinensis (Berk.) Sacc. in the Interior Villages of Chamoli District in Garhwal Himalaya (Uttarakhand) and its Social Impacts. Am. J. Sci. 2010; 6(6), 5-9.
- Tuli H. S., Sandhu S. S., Sharma A. K. Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. 3 Biotech. 2014; 4(1), 1-12.
Go to original source...
Go to PubMed...
- Negi CH. S., Koranga P. R., Ghinga H. S. Yar tsa Gumba (Cordyceps sinensis): A call for its sustainable exploitation. Int. J. Sustain. 2010; 13(3), 165-172.
Go to original source...
- Luo X., Duan Y., Yang W., Zhang H., Li Ch., Zhang J. Structural elucidation and immunostimulatory activity of polysaccharide isolated by subcritical water extraction from Cordyceps militaris. Carbohydr. Polym. 2017; 157, 794-802.
Go to original source...
Go to PubMed...
- Chen Y., Xie M., Li W., Zhang H., Nie S., Wang Y., Li Ch. An Effective Method for Deproteinization of Bioactive Polysaccharides Extracted from lingzhi (Ganoderma atrum). Food Sci. Biotechnol. 2012; 21(1), 191-198.
Go to original source...
- Cobas S. Mnova-MestReNova, version 11.0.4-18998, 2017.
- Shi X. D., Li O. Y, Yin J. Y., Nie S. P. Structure identification of α-glucans from Dictyophora echinovolvata by methylation and 1D/2D NMR spectroscopy. Food Chem. 2019; 271, 338-344.
Go to original source...
Go to PubMed...
- Agrawal P. K. NMR Spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochem. 1992; 31(10), 3307-3330.
Go to original source...
Go to PubMed...
- Zhao CH., Li M., Luo Y., Wu W. Isolation and structural characterization of an immunostimulating polysaccharide from fuzi, Aconitum carmichaeli. Carbohydr. Res. 2006; 341(4), 338-344.
Go to original source...
Go to PubMed...