JOURNAL OF THE CZECH PHARMACEUTICAL SOCIETY AND THE SLOVAK PHARMACEUTICAL SOCIETY

Čes. slov. farm. 2021, 70(5):164-171 | DOI: 10.5817/CSF2021-5-164

Telacebec (Q203): Is there a novel effective and safe anti-tuberculosis drug on the horizon?

Ivan Malík1,2,*, Jozef Čižmárik1, Gustáv Kováč2, Mária Pecháčová1, Lucia Hudecová2
1 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University in Bratislava, Slovak Republic
2 Institute of Chemistry, Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Slovak Medical University in Bratislava, Slovak Republic

High prevalence and stronger emergency of various forms of drug-resistant tuberculosis (DR-TB), including the multidrug-resistant (MDR-TB) as well as extensively drug-resistant (XDR-TB) ones, caused by variously resistant Mycobacterium tuberculosis pathogens, make first-line anti-tuberculosis (anti-TB) agents therapeutically more and more ineffective. Therefore, there is an imperative to develop novel highly efficient (synthetic) agents against both drug-sensitive-TB and DR-TB. The exploration of various heterocycles as prospective core scaffolds for the discovery, development and optimization of anti-TB drugs remains an intriguing scientific endeavour.

Telacebec (Q203; TCB), a molecule containing an imidazo[1,2-a]pyridine-3-carboxamide (IPA) structural motif, is considered a novel very promising anti-TB agent showing a unique mechanism of action. The compound blocks oxidative phosphorylation by inhibiting a mycobacterial respiratory chain due to interference with a specific cytochrome b subunit (QcrB) of transmembrane bc1 menaquinol-cytochrome c oxidoreductase as an essential component for transporting electrons across the membrane from menaquinol to other specific subunit, cytochrome c (QcrC). Thus, the ability of mycobacteria to synthesize adenosine-5'-triphosphate is limited and energy generating machinery is disabled. The

TCB molecule effectively fights drug-susceptible, MDR as well as XDR M. tuberculosis strains. The article briefly explains a mechanism of an anti-TB action related to the compounds containing a variously substituted IPA scaffold and is focused on their fundamental structure-anti-TB activity relationships as well. Special consideration is paid to

TCB indicating the importance of particular structural fragments for maintaining (or even improving) favourable pharmacodynamic, pharmacokinetic and/or toxicological properties. High lipophilicity of

TCB might be regarded as one of the key physicochemical properties with positive impact on anti-TB effect of the drug. In January 2021, the

TCB molecule was also involved in phase-II clinical trials focused on the treatment of Coronavirus Disease-19 caused by Severe Acute Respiratory Syndrome Coronavirus 2.

Keywords: Mycobacterium tuberculosis; drug-resistant tuberculosis; imidazo[1,2-a]pyridine-3-carboxamides; telacebec (Q203); respiratory chain

Received: March 14, 2021; Accepted: September 13, 2021; Published: May 1, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Malík I, Čižmárik J, Kováč G, Pecháčová M, Hudecová L. Telacebec (Q203): Is there a novel effective and safe anti-tuberculosis drug on the horizon? Čes. slov. farm. 2021;70(5):164-171. doi: 10.5817/CSF2021-5-164.
Download citation

References

  1. Barbier M., Wirth T. The evolutionary history, demography, and spread of the Mycobacterium tuberculosis Complex. Microbiol. Spectr. 2016; 4, art. no. TBTB2- 0008-2016 (21 pp.). doi: 10.1128/microbiolspec.TBTB2-0008-2016 Go to original source... Go to PubMed...
  2. Pezzella A. T. History of pulmonary tuberculosis. Thorac. Surg. Clin. 2019; 29, 1-17. doi: 10.1016/j.thorsurg.2018.09.002 Go to original source... Go to PubMed...
  3. World Health Organization. Global Tuberculosis Report 2020. Geneva: World Health Organization 2020.
  4. Chetty S., Ramesh M., Singh-Pillay A., Soliman M. E. S. Recent advancements in the development of anti-tuberculosis drugs. Bioorg. Med. Chem. Lett. 2017; 27, 370- 386. doi: 10.1016/j.bmcl.2016.11.084 Go to original source... Go to PubMed...
  5. Khawbung J. L., Nath D., Chakraborty S. Drug resistant tuberculosis: A review. Comp. Immunol. Microbiol. Infect. Dis. 2021; 74, art. no. 101574 (9 pp.). doi: 10.1016/j.cimid.2020.101574 Go to original source... Go to PubMed...
  6. Dheda K., Gumbo T., Gandhi N. R., Murray M., Theron G., Udwadia Z., Migliori G. B., Warren R. Global control of tuberculosis: from extensively drug-resistant to untreatable tuberculosis. Lancet. Respir. Med. 2014; 2, 321-338. doi: 10.1016/S2213-2600(14)70031-1 Go to original source... Go to PubMed...
  7. Zhan L., Wang J., Wang L., Quin Ch. The correlation of drug resistance and virulence in Mycobacterium tuberculosis. Biosaf. Health 2020; 2, 18-24. doi: 10.1016/j.bsheal.2020.02.004 Go to original source...
  8. Abrahams K. A., Cox J. A. G., Spivey V. L., Loman N. J., Pallen M. J., Constantinidou Ch., Fernández R., Alemparte C., Remuiñán M. J., Barros D., Ballell L., Besra G. S. Identification of novel imidazo[1,2-a]pyridine inhibitors targeting M. tuberculosis QcrB. PLoS One 2012; 7, art. no. e52951 (10 pp.). doi: 10.1371/journal.pone.0052951 Go to original source... Go to PubMed...
  9. Moraski G. C., Markley L. D., Hipskind P. A., Boshoff H., Cho S., Franzblau S. G., Miller M. J. Advent of imidazo [1,2-a]pyridine-3-carboxamides with potent multiand extended drug resistant antituberculosis activity. ACS Med. Chem. Lett. 2011; 2, 466-470. doi: 10.1021/ml200036r Go to original source... Go to PubMed...
  10. Moraski G. C., Markley L. D., Cramer J., Hipskind P. A., Boshoff H., Bailey M. A., Alling T., Ollinger J., Parish T., Miller M. J. Advancement of imidazo[1,2-a]pyridines with improved pharmacokinetics and nM activity vs. Mycobacterium tuberculosis. ACS Med. Chem. Lett. 2013; 4, 675-679. doi: 10.1021/ml400088y Go to original source... Go to PubMed...
  11. Wu Zh., Lu Y., Li L., Zhao R., Wang B., Lv K., Liu M., You X. Identification of N-(2-phenoxyethyl)imidazo[1,2-a]pyridine- 3-carboxamides as new antituberculosis agents. ACS Med. Chem. Lett. 2016; 7, 1130-1133. doi: 10.1021/acsmedchemlett.6b00330 Go to original source... Go to PubMed...
  12. Deep A., Kaur Bhatia R., Kaur R., Kumar S., Kumar Jain U., Singh H., Batra S., Kaushik D., Kishore Deb P. Imidazo [1,2-a]pyridine scaffold as prospective therapeutic agents. Curr. Top. Med. Chem. 2017; 17, 238-250. doi: 10. 2174/1568026616666160530153233 Go to original source... Go to PubMed...
  13. Bahuguna A., Rawat S., Rawat D. S. QcrB in Mycobacterium tuberculosis: The new drug target of antitubercular agents. Med. Res. Rev. 2021; article in press (7 pp.). doi: 10.1002/med.21779 Go to original source... Go to PubMed...
  14. Li Q., Lu X. New antituberculosis drugs targeting the respiratory chain. Chin. Chem. Lett. 2020; 31, 1357-1365. doi: 10.1016/j.cclet.2020.04.007 Go to original source...
  15. Gong H., Li J., Xu A., Tang Y., Ji W., Gao R., Wang S., Yu L., Tian C., Li J., Yen H.-Y., Lam S. M., Shui G., Yang X., Sun Y., Li X., Jia M., Yang Ch., Jiang B., Lou Zh., Robinson C. V., Wong L.-L., Guddat L. W., Sun F., Wang Q., Rao Z. An electron transfer path connects subunits of a mycobacterial respiratory supercomplex. Science 2018; 362, art. no. eaat8923 (12 pp.). doi: 10.1126/science.aat8923 Go to original source... Go to PubMed...
  16. Beites T., O'Brien K., Tiwari D., Engelhart C. A., Walters S., Andrews J., Yang H.-J., Sutphen M. L., Weiner D. M., Dayao E. K., Zimmerman M., Prideaux B., Desai P. V., Masquelin T., Via L. E., Dartois V., Boshoff H. I., Barry C. E., Ehrt S., Schnappinger, D. Plasticity of the Mycobacterium tuberculosis respiratory chain and its impact on tuberculosis drug development. Nat. Commun. 2019; 10, art. no. 4970 (12 pp.). doi: 10.1038/s41467-019-12956-2 Go to original source... Go to PubMed...
  17. Lee B. Sh., Sviriaeva E., Pethe K. Targeting the cytochrome oxidases for drug development in mycobacteria. Prog. Biophys. Mol. Biol. 2020; 152, 45-54. doi: 10.1016/j.pbiomolbio.2020.02.001 Go to original source... Go to PubMed...
  18. Borisov V. B., Gennis R. B., Hemp J., Verkhovsky M. I. The cytochrome bd respiratory oxygen reductases. Biochim. Biophys. Acta 2011; 1807, 1398-1413. doi: 10.1016/j.bbabio.2011.06.016 Go to original source... Go to PubMed...
  19. Berney M., Cook G. M. Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia. PloS One 2010; 5, art. no. e8614 (11 pp.). doi: 10.1371/journal.pone.0008614 Go to original source... Go to PubMed...
  20. Mascolo L., Bald D. Cytochrome bd in Mycobacterium tuberculosis: A respiratory chain protein involved in the defense against antibacterials. Prog. Biophys. Mol. Biol. 2020; 152, 55-63. doi: 10.1016/j.pbiomolbio.2019.11.002 Go to original source... Go to PubMed...
  21. Pethe K., Bifani P., Jang J., Kang S., Park S., Ahn S., Jiricek J., Jung J., Jeon H. K., Cechetto J., Christophe T., Lee H., Kempf M., Jackson M., Lenaerts A. J., Pham H., Jones V., Seo M. J., Kim Y. M., Seo M., Seo J. J., Park D., Ko Y., Choi I., Kim R., Kim S. Y., Lim S., Yim S.-A., Nam J., Kang H., Kwon H., Oh Ch.-T., Cho Y., Jang Y., Kim J., Chua A., Tan B. H., Nanjundappa M. B., Rao S. P. S., Barnes W. S., Wintjens R., Walker J. R., Alonso S., Lee S., Kim J., Oh S., Oh T., Nehrbass U., Han S.-J., No Z., Lee J., Brodin P., Cho S.-N., Nam K., Kim J. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat. Med. 2013; 19, 1157-1160. doi: 10.1038/nm.3262 Go to original source... Go to PubMed...
  22. Gao X., Wen X., Yu Ch., Esser L., Tsao S., Quinn B., Zhang L., Yu L., Xia D. The crystal structure of mitochondrial cytochrome bc1 in complex with famoxadone: the role of aromatic-aromatic interaction in inhibition. Biochemistry 2002; 41, 11692-11702. doi: 10.1021/bi026252p Go to original source... Go to PubMed...
  23. Kessl J. J., Lange B. B., Merbitz-Zahradnik T., Zwicker K., Hill P., Meunier B., Pálsdóttir H., Hunte C., Meshnick S., Trumpower L. Molecular basis for atovaquone binding to the cytochrome bc1 complex. J. Biol. Chem. 2003; 278, 31312-31318. doi: 10.1074/jbc.M304042200 Go to original source... Go to PubMed...
  24. Lu P., Asseri A. H., Kremer M., Maaskant J., Ummels R., Lill H., Bald D. The anti-mycobacterial activity of the cytochrome bcc inhibitor Q203 can be enhanced by small-molecule inhibition of cytochrome bd. Sci. Rep. 2018; 8, art. no. 2625 (7 pp.). doi: 10.1038/s41598-018-20989-8 Go to original source... Go to PubMed...
  25. Arora K., Ochoa-Montaño B., Tsang P. S., Blundell T. L., Dawes S. S., Mizrahi V., Bayliss T., Mackenzie C. J., Cleghorn L. A. T., Ray P. C., Wyatt P. G., Uh E., Lee J., Barry 3rd C. E., Boshoff H. I. Respiratory flexibility in response to inhibition of cytochrome c oxidase in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2014; 58, 6962-6965. doi: 10.1128/AAC.03486-14 Go to original source... Go to PubMed...
  26. Li X.-W., Herrmann J., Zang Y., Grellier P., Prado S., Müller R., Nay B. Synthesis and biological activities of the respiratory chain inhibitor aurachin D and new ring versus chain analogues. Beilstein J. Org. Chem. 2013; 9, 1551-1558. doi: 10.3762/bjoc.9.176 Go to original source... Go to PubMed...
  27. Kang S., Kim Y. M., Kim R. Y., Seo M. J., No Z., Nam K., Kim S., Kim J. Synthesis and structure-activity studies of side chain analogues of the anti-tubercular agent, Q203. Eur. J. Med. Chem. 2017; 125, 807-815. doi: 10.1016/j.ejmech.2016.09.082 Go to original source... Go to PubMed...
  28. Kang S., Kim Y. M., Jeon H., Park S., Seo M. J., Lee S., Park D., Nam J., Lee S., Nam K., Kim S., Kim S. Synthesis and structure-activity relationships of novel fused ring analogues of Q203 as antitubercular agents. Eur. J. Med. Chem. 2017; 136, 420-427. doi: 10.1016/j.ejmech.2017.05.021 Go to original source... Go to PubMed...
  29. Sellamuthu S., Bhat M. F., Kumar A., Singh, S. K. Phenothiazine: A better scaffold against tuberculosis. Mini Rev. Med. Chem. 2018; 18, 1442-1451. doi: 10.2174/1389557517666170220152651 Go to original source... Go to PubMed...
  30. Appetecchia F., Consalvi S., Scarpecci C., Biava M., Poce G. SAR Analysis of small molecules interfering with energy-metabolism in Mycobacterium tuberculosis. Pharmaceuticals (Basel) 2020; 13, art. no. 227 (33 pp.). doi: 10.3390/ph13090227 Go to original source... Go to PubMed...
  31. Kang S., Kim R. Y., Seo M. J., Lee S., Kim Y. M., Seo M., Seo J. J., Ko Y., Choi I., Jang J., Nam J., Park S., Kang H., Kim H. J., Kim J., Ahn S., Pethe K., Nam K., No Z., Kim J. Lead optimization of a novel series of imidazo[1,2-a]- pyridine amides leading to a clinical candidate (Q203) as a multi- and extensively-drug-resistant anti-tuberculosis agent. J. Med. Chem. 2014; 57, 5293-5305. doi: 10.1021/jm5003606 Go to original source... Go to PubMed...
  32. Motamen S., Quinn R. J. Analysis of approaches to anti- tuberculosis compounds. ACS Omega 2020; 5, 28529- 28540. doi: 10.1021/acsomega.0c03177 Go to original source... Go to PubMed...
  33. Li L., Wang Ap., Wang B., Liu M., Lv K., Tao Z., Ma Ch., Ma X., Han B., Wang Ao., Lu Y. N-(2-Phenoxy)ethyl imidazo[1,2-a]pyridine-3-carboxamides containing various amine moieties: Design, synthesis and antitubercular activity. Chin. Chem. Lett. 2020; 31, 409-412. doi: 10.1016/j.cclet.2019.07.038 Go to original source...
  34. Wang H., Wang A., Gu J., Fu L., Lv K., Ma Ch., Tao Z., Wang B., Liu M., Guo H., Lu Y. Synthesis and antitubercular evaluation of reduced lipophilic imidazo[1,2-a]pyridine- 3-carboxamide derivatives. Eur. J. Med. Chem. 2019; 165, 11-17. doi: 10.1016/j.ejmech.2018.12.071 Go to original source... Go to PubMed...
  35. Fullam E., Young R. J. Physicochemical properties and Mycobacterium tuberculosis transporters: keys to efficacious antitubercular drugs? RSC Med. Chem. 2021; 12, 43-56. doi: 10.1039/d0md00265h Go to original source... Go to PubMed...
  36. Lipinski C. A. Rule of five in 2015 and beyond: target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv. Drug Deliv. Rev. 2016; 101, 34-41. doi: 10.1016/j.addr.2016.04.029 Go to original source... Go to PubMed...
  37. Veber D. F., Johnson S. R., Cheng H.-Y., Smith B. R., Ward K. W., Kopple K. D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002; 45, 2615-2623. doi: 10.1021/jm020017n Go to original source... Go to PubMed...
  38. Machado D., Girardini M., Miveiros M., Pieroni M. Challenging the drug-likeness dogma for new drug discovery in tuberculosis. Front. Microbiol. 2018; 9, art. no. 1367 (23 pp.). doi: 10.3389/fmicb.2018.01367 Go to original source... Go to PubMed...
  39. No Z., Kim J., Brodin P., Seo M. J., Park E., Cechetto J., Jeon H., Genovesio A., Lee S., Kang S., Ewann F. A., Nam J. Y., Fenistein D. P. C., Christophe T., Contreras Dominguez M., Kim E., Heo J. Anti-infective pyrido(1,2-a)pyrimidines. PCT Publication No. WO 2011/085990 A1, 21 July 2011.
  40. https://clinicaltrials.gov/ct2/show/NCT03563599 (18 January 2021)
  41. de Jager V. R., Dawson R., van Niekerk Ch., Hutchings J., Kim J., Vanker N., van der Merwe L., Choi J., Nam K., Diacon A. H. Telacebec (Q203), a new antituberculosis agent. N. Engl. J. Med. 2020; 382, 1280-1281. doi: 10.1056/NEJMc1913327 Go to original source... Go to PubMed...
  42. Russian Venture Company. Maxwell Biotech Venture Fund's portfolio company Infectex acquires exclusive rights to Qurient's tuberculosis drug Q203. https://www.prnewswire.com/news-releases/maxwell-biotech-venture-funds-portfolio-company-infectex-acquires-exclusive-rights-to-qurients-tuberculosis-drug-q203-245354721.html (12 March 2021).
  43. Volkova A. Infectex successfully completed phase 1 clinical trials of Q203 drug for treating the tuberculosis. https://www.rvc.ru/en/press-service/massmedia/rvc/ 108385/ (18 January 2021).
  44. Lee B. S., Kalia N. P., Jin X. E. F., Hasenoehrl E. J., Berney M., Pethe K. Inhibitors of energy metabolism interfere with antibiotic-induced death in mycobacteria. J. Biol. Chem. 2019; 294, 1936-1943. doi: 10.1074/jbc.RA118.005732 Go to original source... Go to PubMed...
  45. Telacebec - Qurient Co. https://adisinsight.springer.com/drugs/800039962 (12 March 2021).




Czech and Slovak Pharmacy

Madam, Sir,
please be aware that the website on which you intend to enter, not the general public because it contains technical information about medicines, including advertisements relating to medicinal products. This information and communication professionals are solely under §2 of the Act n.40/1995 Coll. Is active persons authorized to prescribe or supply (hereinafter expert).
Take note that if you are not an expert, you run the risk of danger to their health or the health of other persons, if you the obtained information improperly understood or interpreted, and especially advertising which may be part of this site, or whether you used it for self-diagnosis or medical treatment, whether in relation to each other in person or in relation to others.

I declare:

  1. that I have met the above instruction
  2. I'm an expert within the meaning of the Act n.40/1995 Coll. the regulation of advertising, as amended, and I am aware of the risks that would be a person other than the expert input to these sites exhibited


No

Yes

If your statement is not true, please be aware
that brings the risk of danger to their health or the health of others.