Čes. slov. farm. 2018, 67(5):200-204 | DOI: 10.36290/csf.2018.028
NMR and IR analysis of natural substances isolated from Cordyceps medicinal mushrooms
- 1 University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
- 2 University of Pavol Jozef Šafárik, Faculty of Science, Institute of Chemistry, Košice, Slovak Republic
- 3 Technical University, Faculty of Forestry, Department of Forest Protection and Game Management, Zvolen, Slovak Republic
- 4 Mykoforest, Velčice, Slovak Republic
There exist about 750 species of Cordyceps at present. Ahigh price of natural Cordyceps and its lack in nature caused that the attention has been focused to its cultivation in laboratory conditions. The demand for this fungus-parasite is still quite high nowadays, as shown by the amount of commercial nutritional supplements. Phytochemical diversity has ensured that Cordyceps is used as an immunomodulatory and an antioxidant; it has anti-cancer, anti-inflammatory, anti-diabetic, antibacterial, anti-HIV effects. In the present study we focused on NMR and IR analyses of natural substances isolated from two species of Cordyceps: Cordyceps sinensis MFTCCB025/0216, MFTCCB026/0216 and Paecilomyces hepiali MFTCCB023/0216. Two types of rice substrates (Oryza sativa Indica and Oryza sativa Japonica) were used for cultivation. A total of five methanol extracts obtained by a reflux method of the ground mushroom were analysed. To determine the quality and quantity of the major chemical compounds, 1D and 2D NMR analysis has been used with 1H, 13C, COSY, NOESY, HSQC, HMBC and DEPT spectra. IR spectroscopy was chosen as a complementary analysis to determine functional groups. Linoleic acid, oleic acid and mannitol were identified as major compounds of the methanol extracts. Tyrosine, alanine, urea and the others biologically interesting substances were found as minor components.
Keywords: Cordyceps sinensis; NMR and IR analysis; Oleic acid; D-mannitol
Received: September 24, 2018; Accepted: December 7, 2018; Published: May 1, 2018 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Hobbs C. H. Medicinal mushrooms: An exploration of tradition, healing, and culture. Botanica Press 1995; 251 s.
- Holliday J., Cleaver M., Wasser S. P. Cordyceps. In: Coates P. M., Blackman M. R., Cragg G., Levine M., Moss J., White J. (eds). Encyclopedia of dietary supplements. New York: Marcel Dekker 2005; 1-13.
- Zhu J. S., Halpern G., Jones K. The scientific rediscovery of a precious ancient Chinese herbal regimen: Cordyceps sinensis: Part II. J. Alt. Comp. Med. 1998; 4, 429-457.
Go to original source...
Go to PubMed...
- Holliday J., Cleaver P. Medicinal Value of the Caterpillar Fungi Species of the Genus Cordyceps (Fr.) Link (Ascomycetes). A Review. Int. J. Med. Mushrooms 2008; 10, 219-234.
Go to original source...
- Tuli S. H., Sandhu S. S., Sharma A. K. Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. Biotech. 2014; 4, 1-12.
Go to original source...
Go to PubMed...
- Zhu J. S., Halpern G. M., Johns K. The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis: Part I. J. Alt. Comp. Med. 1998; 4, 289-303.
Go to original source...
Go to PubMed...
- Uphof J. C. Th. Dictionary of Economic Plants. New York: Verlag von J. Cramer 1968; 152.
- Chiang S. S., Liang Z. Ch., Wang Y. Ch., Liang Ch. H. Effect of light-emitting diodes on the production of cordycepin, and mannitol and adenosine in solid-state fermented rice by Cordyceps militaris. J. Food Compos. Anal. 2017; 60, 51-56.
Go to original source...
- Olatunji O. J., Tang J., Tola A., Auberon F., Oluwaniyi O., Ouyang Z. The genus Cordyceps: An extensive review of its traditional uses, phytochemistry and pharmacology. Fitoterapia 2018; Article in Press, https://doi.org/10.1016/j.fitote.2018.05.010
Go to original source...
Go to PubMed...
- Zhang X., Liu Q., Zhou W., Li P., Alolga R. N., Qi L. W., Yin X. A comparative proteomic characterization and nutritional assessment of naturally-and artificially-cultivated Cordyceps sinensis. J. Proteomics 2018; 181, 24-35.
Go to original source...
Go to PubMed...
- Wang J., Nie S., Chen S., Phillips A. O., Phillips G. O., Li Y., Xie M., Cui S. W. Structural characterization of an α-1, 6-linked galactomannan from natural Cordyceps sinensis. Food Hydrocoll. 2018; 78, 77-91.
Go to original source...
- Yang S., Jin L., Ren X., Lu J., Meng Q. Optimization of fermentation process of Cordyceps militaris and antitumor activities of polysaccharides in vitro. J. Food Drug Anal. 2014; 22, 468-476.
Go to original source...
Go to PubMed...
- Yang F. Q., Li D. Q., Feng K., Hu D. J., Li S. P. Determination of nucleotides, nucleosides and their transformation products in Cordyceps by ion-pairing reversed-phase liquid chromatography-mass spektrometry. J. Chromatogr. A 2010; 1217, 5501-5510.
Go to original source...
Go to PubMed...
- Zhao J., Xie J., Wang L. Y., Li S. P. Advanced development in chemical analysis of Cordyceps. J. Pharm. Biomed. Anal. 2014; 87, 271-289.
Go to original source...
Go to PubMed...
- Guo L. X., Xu X. M., Wu Ch. F., Lin L., Zou S. Ch., Luan T. G., Yuan J. P., Wang J. H. Fatty acid composition of lipids in wild Cordyceps sinensis from major habitats in China. Biomedicine & Preventive Nutrition 2012; 2, 42-50.
Go to original source...
- OECD. www.oecd.org/science/biotrack/46815226.pdf (Organisation of Economic Co-operation and Development). 2004. Consensus document on compositional considerations for new varieties of rice (Oryza sativa): Key food and feed nutrients and anti-nutrients. OECD, Paris.
- SDBSWeb. sdbs.db.aist.go.jp (National Institute of Advanced Industrial Science and Technology) (15. 06. 2015).