Čes. slov. farm. 2018, 67(4):143-153 | DOI: 10.36290/csf.2018.021
Biological role of copper as an essential trace element in the human organism
- University of Veterinary and Pharmaceutical Sciences Brno, Department of Pharmaceutics, Brno, Czech Republic
This paper presents an overview of the physiological properties of copper (Cu), an essential trace element playing an important role in the human metabolism, primarily as a cofactor of many metalloenzymes. The maintenance of Cu homeostasis is required for proper functioning of the human body. However, when the disturbance of Cu homeostasis occurs, strong pathological manifestations may develop. Wilson's disease and idiopathic toxicosis are examples of severe chronic liver diseases that are the results of genetic predisposition to the hepatic accumulation of copper. Conversely, congenital Menkes disease is manifested as serious Cu's nutritional deficiency. Although Cu is necessary for many life processes, it is also a powerful weapon used since the ancient times against many microorganisms. Finally, the theories of Cu antimicrobial and antiviral mechanisms of action are summarized, including contemporary and potential future utilizations in medical and non-medical fields of human life.
Keywords: copper; metalloenzymes; copper toxicity; copper deficiency; copper-related diseases; copper applications
Received: August 6, 2018; Accepted: August 21, 2018; Published: April 1, 2018 Show citation
References
- Olivares M., Uauy R. Copper as an essential nutrient. Am. J. Clin. Nutr. 1996; 63, 791S-796S.
Go to original source...
Go to PubMed...
- Krupanidhi S., Sreekumar A., Sanjeevi C. B. Copper & biological health. Indian J. Med. Res. 2008; 128, 448-461.
- Gaetke L. M., Chow-Johnson H. S., Chow Ch. K. Copper: Toxicological relevance and mechanisms. Arch. Toxicol. 2014; 88, 1929-1938.
Go to original source...
Go to PubMed...
- Sharp P. A. Ctr1 and its role in body copper homeostasis. Int. J. Biochem. Cell B. 2003; 35, 288-291.
Go to original source...
Go to PubMed...
- Chillappagari S., Seubert A., Trip H., Kuipers O. P., Marahiel M. A., Miethke M. Copper Stress Affects Iron Homeostasis by Destabilizing Iron-Sulfur Cluster Formation in Bacillus subtilis. J. Bacteriol. 2010; 192, 2512-2524.
Go to original source...
Go to PubMed...
- Ferns G. A. A., Lamb D. J., Taylor A. The possible role of copper ions in atherogenesis: the Blue Janus. Atherosclerosis 1997; 133, 139-152.
Go to original source...
Go to PubMed...
- Arredondo M., Núñez M. T. Iron and copper metabolism. Mol. Aspects Med. 2005; 26, 313-327.
Go to original source...
Go to PubMed...
- Uauy, R., Olivares M., Gonzalez M. Essentiality of copper in humans. Am. J. Clin. Nutr. 1998; 67, 952S-959S.
Go to original source...
Go to PubMed...
- Angelova M., Asenova S., Nedkova V., Koleva-Kolarova R. Copper in the human organism. Trakia J. Sci. 2011; 9, 88-98.
- Wang K., Chen X., Cui Y., Gao X. The reference interval of zinc, copper, selenium and zinc/copper ratio of healthy adult in Licang. Trace Elem. Electroly. 2011; 28, 1-10.
Go to original source...
- Tapiero H., Townsend D. M., Tew K. D. Trace elements in human physiology and pathology. Copper. Biomed. Pharmacother. 2003; 57, 386-398.
Go to original source...
Go to PubMed...
- Festa R. A., Thiele D. J. Copper: an Essential Metal in Biology. Curr. Biol. 2011; 21, R877-R883.
Go to original source...
Go to PubMed...
- Ladomersky E., Petris M. J. Copper tolerance and virulence in bacteria Metallomics. 2015; 7, 957-964.
Go to original source...
Go to PubMed...
- O'Gorman J., Humphreys H. Application of copper to prevent and control infection. Where are we now? J. Hosp. Infect. 2012; 81, 217-223.
Go to original source...
Go to PubMed...
- Cai X., Zhang B., Liang Y., Zhang J., Yan Y., Chen X., Wu Z., Liu H., Wen S., Tan S., Wu T. Study on the antibacterial mechanism of copper ion- and neodymium ion-modified α-zirconium phosphate with better antibacterial activity and lower cytotoxicity. Colloid. Surface B. 2015; 132, 281-289.
Go to original source...
Go to PubMed...
- Ren G., Hu D., Cheng E. W., Vargas-Reus M. A., Reip P., Allaker R. P. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Ag. 2009; 33, 587-590.
Go to original source...
Go to PubMed...
- Borkow G., Gabbay J. Putting copper into action: copper impregnated products with potent biocidal activities. FASEB J. 2004; 18, 1728-1730.
Go to original source...
Go to PubMed...
- Sagripanti J.-L., Routson L. B., Lytle C. D. Virus Inactivation by Copper or Iron Ions Alone and in the Presence of Peroxide. Appl. Environ. Microbiol. 1993; 59, 4374-4376.
Go to original source...
Go to PubMed...
- Sagripanti J. L., Routson L. B., Bonifacino A. C., Lytle C. D. Mechanism of Copper-Mediated Inactivation of Herpes Simplex Virus. Antimicrob. Agents Ch. 1997; 41, 812-817.
Go to original source...
Go to PubMed...
- Sagripanti J. L., Lightfoote M. M. Cupric and Ferric Ions Inactivate HIV. AIDS Res. Hum. Retrov. 1996; 12, 333-337.
Go to original source...
Go to PubMed...
- Roblero L., Guadarrama A., Lopez T., Zegers-Hochschild F. Effect of copper ion on the motility, viability, acrosome reaction and fertilizing capacity of human spermatozoa in vitro. Reprod. Fertil. Dev. 1996; 8, 871-874.
Go to original source...
Go to PubMed...
- Hostynek J. J., Maibach H. I. Copper hypersensitivity: dermatologic aspect - an overview. Rev. Environ. Health 2003; 18, 153-183.
Go to original source...
Go to PubMed...
- Sivin I. Utility and drawbacks of continuous use of a copper T IUD for 20 years. Contraception 2007; 75, S70-S75.
Go to original source...
Go to PubMed...
- Hubacher D., Lara-Ricalde R., Douglas M. D., Taylor J., Guerra-Infante F., Guzmán-Rodríguez R. Use of Copper Intrauterine Devices and the Risk of Tubal Infertility among Nulligravid Women. N. Engl. J. Med. 2001; 345, 561-567.
Go to original source...
Go to PubMed...
- Stern B. R., Solioz M., Krewski D., Aggett P., Aw T.-Ch., Baker S., Crump K., Dourson M., Haber L., Hertzberg R., Keen C., Meek B., Rudenko L., Schoeny R., Slob W., Star T. Copper and Human Health: Biochemistry, Genetics, and Strategies for Modeling Dose-response Relationships. J. Toxicol. Environ. Health B Crit. Rev. 2007; 10, 157-222.
Go to original source...
Go to PubMed...
- Mills C. F. Dietary interactions involving the trace elements. Annu. Rev. Nutr. 1985; 5, 173-193.
Go to original source...
Go to PubMed...
- Sandstead H. H. Copper bioavailability and requirements. Am. J. Clin. Nutr. 1982; 35, 809-814.
Go to original source...
Go to PubMed...
- Turnlund J. R., King J. C., Gong B., Keyes W. R., Michel M. C. A stable isotope study of copper absorption in young men: effect of phytate and α-cellulose. Am. J. Clin. Nutr. 1985; 42, 18-23.
Go to original source...
Go to PubMed...
- Milne D. B., Klevay L. M., Hunt J. R. Effects of ascorbic acid supplements and a diet marginal in copper on indices of copper nutriture in women. Nutr. Res. 1988; 8, 865-873.
Go to original source...
- Jacob R. A., Skala J. H., Omaye S. T., Turnlund J. R. Effect of Varying Ascorbic Acid Intakes on Copper Absorption and Ceruloplasmin Levels in Young Men. J. Nutr. 1987; 117, 2109-2115.
Go to original source...
Go to PubMed...
- Redman R. S., Fields M., Reiser S., Smith J. C. Jr. Dietary fructose exacerbates the cardiac abnormalities of copper deficiency in rats. Atherosclerosis 1988; 74, 203-214.
Go to original source...
Go to PubMed...
- Holbrook J. T., Smith J. C. Jr., Reiser S. Dietary fructose or starch: effects on copper, zinc, iron, manganese, calcium and magnesium balances in humans. Am. J. Clin. Nutr. 1989; 49, 1290-1294.
Go to original source...
Go to PubMed...
- World Health Organization Geneva. Trace elements in human nutrition and health. WHO Library Cataloguing in Publication Data 1996.
- Lutsenko S. Human copper homeostasis: a network of interconnected pathways. Curr. Opin. Chem. Biol. 2010, 14, 211-217.
Go to original source...
Go to PubMed...
- Collins J. F., Prohaska J. R., Knutson M. D. Metabolic crossroads of iron and copper. Nutr. Rev. 2010; 68, 133-147.
Go to original source...
Go to PubMed...
- Nose Y., Wood L. K., Kim B.-U., Prohaska J. R., Fry R. S., Spears J. W., Thiele D. J. Ctr1 Is an Apical Copper Transporter in Mammalian Intestinal Epithelial Cells in Vivo That Is Controlled at the Level of Protein Stability. J. Biol. Chem. 2010; 285, 32385-32392.
Go to original source...
Go to PubMed...
- Nose Y., Kim B.-E., Thiele D. J. Ctr1 drives intestinal copper absorption and is essential for growth, iron metabolism, and neonatal cardiac function. Cell Metab. 2006; 4, 235-244.
Go to original source...
Go to PubMed...
- Kim H., Son H. Y., Bailey S. M., Lee J. Deletion of hepatic Ctr1 reveals its function in copper acquisition and compensatory mechanisms for copper homeostasis. Am. J. Physiol.-Gastr. L. 2009; 296, G356-G364.
Go to original source...
Go to PubMed...
- Zimnicka A. M., Maryon E. B., Kaplan J. H. Human copper transporter hCTR1 mediates basolateral uptake of copper into enterocytes: implications for copper homeostasis. J. Biol. Chem. 2007; 282, 26471-26480.
Go to original source...
Go to PubMed...
- Moriya M., Ho Y.H., Grana A., Nguyen L., Alvarez A., Jamil R., Ackland M.L., Michalczyk A., Hamer P, Ramos D., Kim S., Mercer J. F., Linder M. C. Copper is taken up efficiently from albumin and alpha2-macroglobulin by cultured human cells by more than one mechanism. Am. J. Physiol.-Cell Ph. 2008; 295, C708-C721.
Go to original source...
Go to PubMed...
- Bost M., Houdart S., Oberli M., Kalonji E., Huneau J.-F., Margaritis I. Dietary copper and human health: Current evidence and unresolved issues. J. Trace Elem. Med. Bio. 2016; 35, 107-115.
Go to original source...
Go to PubMed...
- Ferguson-Miller S., Babcock G. T. Heme/Copper Terminal Oxidases. Chem. Rev. 1996; 96, 2889-2908.
Go to original source...
Go to PubMed...
- Wikstrom M. K. F. Proton pump coupled to cytochrome-c oxidase in mitochondria. Nature 1977; 266, 271-273.
Go to original source...
Go to PubMed...
- Jepma M., Deinum J., Asplund Ch. L., Rombouts S. A., Tamsma J. T., Tjeerdema N., Spapé M. M., Garland E. M., Robertson D., Lenders J. W. M., Nieuwenhuis S. Neurocognitive Function in Dopamine-β-Hydroxylase Deficiency. Neuropsychopharmacol. 2011; 36, 1608-1619.
Go to original source...
Go to PubMed...
- Biesemeier A., Kreppel F., Kochanek S., Schraermeyer U. The classical pathway of melanogenesis is not essential for melanin synthesis in the adult retinal pigment epithelium. Cell Tissue Res. 2010; 339, 551-560.
Go to original source...
Go to PubMed...
- Saenko E. L., Yaropolov A. I., Harris E. D. Biological functions of ceruloplasmin expressed through copper-binding sites and a cellular receptor. J. Trace Elem. Exp. Med. 1994; 7, 69-88.
- Mukhopadhyay Ch. K., Mazumder B., Fox P. L. Role of Hypoxia inducible Factor-1 in Transcription Activation of Ceruloplasmin by Iron Deficiency. J. Biol. Chem. 2000; 275, 21048-21054.
Go to original source...
Go to PubMed...
- Bonham M., O'Connor J. M., Hannigan B. M., Strain J. J. The immune system as a physiological indicator of marginal copper status? Brit. J. Nutr. 2002; 87, 393-403.
Go to original source...
- Gaetke L. M., Chow Ch. K. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003, 189, 147-163.
Go to original source...
Go to PubMed...
- Dizdaroglu M., Rao G., Halliwel B., Gajewski E. Damage to the DNA bases in mammalian chromatin by hydrogen peroxide in the presence of ferric and cupric ions. Arch. Biochem. Biophys. 1991; 285, 317-324.
Go to original source...
Go to PubMed...
- Sagripanti J.-L., Kraemer K. H. Site-specific Oxidative DNA Damage at Polyguanosine Produced by Copper Plus Hydrogen Peroxide. J. Biol. Chem. 1989; 264, 1729-1734.
Go to original source...
- Sagripanti J.-L., Goering P. L., Lamanna A. Interaction of copper with DNA and antagonism by other metals. Toxicol. Appl. Pharm. 1991; 110, 477-485.
Go to original source...
Go to PubMed...
- Li Y., Trush M. A. DNA damage resulting from the oxidation of hydroquinone by copper: role for a Cu(II)Cu(I) redox cycle and reactive oxygen generation. Carcinogenesis. 1993; 14, 1303-1311.
Go to original source...
Go to PubMed...
- Toyokosni S., Sagripanti J.-L. Increased 8-hydroxyguanosine in kidney and liver of rats continuously exposed to copper. Toxicol. Appl. Pharm. 1994; 126, 91-97.
Go to original source...
Go to PubMed...
- Samuni A., Aronovitch J., Godinger D., Chevion M., Czapski G. On the cytotoxicity of vitamin C and metal ions. A site-specific Fenton mechanism. Eur. J. Biochem. 1993; 137, 119-124.
Go to original source...
Go to PubMed...
- Stohs S. J., Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radical Bio. Med. 1995; 18, 321-336.
Go to original source...
Go to PubMed...
- Birben E., Sahiner U. M., Sackesen C., Erzurum S., Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012; 5, 9-19.
Go to original source...
Go to PubMed...
- Wang X., Moulla D., Wright J.A., Brown D. R. Copper binding regulates intracellular alpha-synuclein localisation, aggregation and toxicity. J. Neurochem. 2010; 113, 704-714.
Go to original source...
Go to PubMed...
- Iakovidis I., Delimaris I., Piperakis S. M. Copper and Its Complexes in Medicine: A Biochemical Approach. SAGE-Hindawi Access to Research. Mol. Biol. Int. 2011; Article ID 594529, 13p.
Go to original source...
- Muñoz C., López M., Olivares M., Pizarro F., Arredondo M., Araya M. Differential response of interleukin-2 production to chronic copper supplementation in healthy humans. Eur. Cytokine Netw. 2005; 16, 261-265.
- Uriu-Adams J. Y., Keen C. L. Copper, oxidative stress, and human health. Mol. Aspects Med. 2005; 26, 268-298.
Go to original source...
Go to PubMed...
- Hawk S. N., Lanoue L., Keen C. L., Kwik-Uribe C. L., Rucker R. B., Uriu-Adams J. Y. Copper-deficient rat embryos are characterized by low superoxide dismutase activity and elevated superoxide anions. Biol. Reprod. 2003; 68, 896-903.
Go to original source...
Go to PubMed...
- Lynch S. M., Frei B., Morrow J. D., Roberts L. J., Xu A., Jackson T., Reyna R., Klevay L. M., Vita J. A., Keaney J. F. Jr. Vascular superoxide dismutase deficiency impairs endothelial vasodilator function through direct inactivation of nitric oxide and increased lipid peroxidation. Arterioscl. Throm. Vas. 1997; 17, 2975-2981.
Go to original source...
Go to PubMed...
- Johnson W. T., Thomas A. C. Copper deprivation potentiates oxidative stress in HL-60 cell mitochondria. Proc. Soc. Exp. Biol. Med. 1999; 221, 147-152.
Go to original source...
Go to PubMed...
- Chen Y., Saari J. T., Kang Y. J. Weak antioxidant defenses make the heart a target for damage in copper-deficient rats. Free Radical Bio. Med. 1994; 17, 529-536.
Go to original source...
Go to PubMed...
- Nelson S. K., Huang C. J., Mathias M. M., Allen K. G. Copper-marginal and copper-deficient diets decrease aortic prostacyclin production and copper-dependent superoxide dismutase activity, and increase aortic lipid peroxidation in rats. J. Nutr. 1992; 122, 2101-2108.
Go to original source...
Go to PubMed...
- Brewer G. J. Copper Control as an Antiangiogenic Anticancer Therapy: Lessons from Treating Wilson's Disease. Exp. Biol. M. 2001; 226, 665-673.
Go to original source...
Go to PubMed...
- Xu L., Pu J. Alpha-Synuclein in Parkinson's Disease: From Pathogenetic Dysfunction to Potential Clinical Application. Hindawi Publishing Corporation Parkinson's Disease. 2016; Article ID 1720621, 10p.
Go to original source...
- Gupte A., Mumper R. J. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat. Rev. 2009; 35, 32-46.
Go to original source...
Go to PubMed...
- Zowczak M., Iskra M., Paszkowski J., Mańcyak M., Torliński L., Wysocka E. Oxidase activity of ceruloplasmin and concentrations of copper and zinc in serum of cancer patients. J. Trace Elem. Med. Bio. 2001; 15, 193-196.
Go to original source...
Go to PubMed...
- Samanovic M. I., Ding C., Thiele D. J., Darwin K. H. Copper in microbial pathogenesis: meddling with the metal. Cell Host Microbe 2012; 11, 106-115.
Go to original source...
Go to PubMed...
- Warnes S. L., Caves V., Keevil C. W. Mechanism of copper surface toxicity in Escherichia coli 0157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria. Environ. Microbiol. 2012; 14, 1730-1743.
Go to original source...
Go to PubMed...
- Santo C. E., Lam E. W., Elowsky C. G., Quaranta D., Domaille D. W., Chang C. J., Grass G. Bacterial Killing by Dry Metallic Copper Surfaces. Appl. Environ. Microb. 2011; 77, 794-802.
Go to original source...
Go to PubMed...
- Borkow G., Gabbay J. Copper, An Ancient Remedy Returning to Fight Microbial, Fungal and Viral Infections. Curr. Chem. Bio. 2009; 3, 272-278.
Go to original source...
- Grass G., Rensing C., Solioz M. Metallic Copper as an Antimicrobial Surface. Appl. Environ. Microb. 2011; 77, 1541-1547.
Go to original source...
Go to PubMed...
- Macomber L., Imlay J. A. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. P. Natl. Acad. Sci. USA. 2009; 106, 8344-8349.
Go to original source...
Go to PubMed...
- Sagripanti J.-L. Metal-based formulations with high microbicidal activity. Appl. Environ. Microb. 1992; 58, 3157-3162.
Go to original source...
Go to PubMed...
- Borkow G., Sidwell R. W., Smee D. F., Barnard D. L., Morrey J. D., Lara-Villegas H. H., Shemer-Avni Y., Gabbay J. Neutralizing Viruses in Suspensions by Copper Oxide-Based Filters. Antimicrob. Agents Ch. 2007; 51: 2605-2607.
Go to original source...
Go to PubMed...
- Borkow G., Lara H. H., Covington C. Y., Nyamathi A., Gabbay J. Deactivation of human immunodeficiency virus type 1 in medium by copper oxide-containing filters. Antimicrob. Agents Ch. 2008; 52, 518-525.
Go to original source...
Go to PubMed...
- Abad F. X., Pinto R. M., Diez J. M., Bosch A. Disinfection of human enteric viruses in water by copper and silver in combination with low levels of chlorine. Appl. Environ. Microb. 1994, 60, 2377-2383.
Go to original source...
Go to PubMed...
- Samuni A., Chevion M., Czapski G. Roles of copper and superoxide anion radicals in the radiation-induced inactivation of T7 bacteriophage. Radiat. Res. 1984; 99, 562-572.
Go to original source...
- Borkow G., Okon-Levy N., Gabbay J. Copper oxide impregnated wound dressings: biocidal and safety studies. Wounds 2010; 22, 301-310.
- Sen C. K., Khanna S., Venojarvi M., Trikha P., Ellison E. C., Hunt T. K., Roy S. Copper-induced vascular endothelial growth factor expression and wound healing. Am. J. Physiol.-Heart C. 2002; 282, H1821-H1827.
Go to original source...
Go to PubMed...
- Thneibat A., Fontana M, Cochran M. A., Gonzalez-Cabezas C., Moore B. K., Matis B. A., Lund M. R. Anticariogenic and antibacterial properties of a copper varnish using an in vitro microbial caries model. Oper. Dent. 2008; 33, 142-148.
Go to original source...
Go to PubMed...
- Foley J., Blackwell A. In vivo cariostatic effect of black copper cement on carious dentine. Caries Res. 2003; 37, 254-260.
Go to original source...
Go to PubMed...
- Wu J. P., Pickle S. Extended use of the intrauterine device: a literature review and recommendations for clinical practice. Contraception 2014; 89, 495-503.
Go to original source...
Go to PubMed...
- Bilian X. Intrauterine devices. Best Pract. Res. Cl. Ob. 2002; 16, 155-168.
Go to original source...
Go to PubMed...
- Stérimar. https://sterimar.com/en/our-products/nez-sujet-aux-infections/ (26. 4. 2018)
- Pavelková M., Kubová K., Vysloužil J., Kejdušová M., Vetchý D., Celer V., Molinková D., Lobová D., Pechová A., Vysloužil J., Kulich P. Biological effects of drug-free alginate beads cross-linked by copper ions prepared using external ionotropic gelation. AAPS Pharmscitech. 2017; 18, 1343-1354.
Go to original source...
Go to PubMed...
- Jackson G. E., May P. M., Williams D. R. Metal-ligand complexes involved in rheumatoid arthritis-I: justifications for copper administration. J. Inorg. Nucl. Chem. 1978; 40, 1189-1194.
Go to original source...
- El-Gammal O. A., Elmorsy E. A., Sherif Y. E. Evaluation of the anti-inflammatory and analgesic effects of Cu(II) and Zn(II) complexes derived from 2-(naphthalen-1-yloxy)-N'-(1-(pyridin-2-1)ethylidene)acetohydrazide. Spectrochim. Acta A. 2014; 120, 332-339.
Go to original source...
Go to PubMed...
- Tisato F., Marzano C., Porchia M., Pellei M., Santini C. Copper in diseases and treatments, and copper-based anticancer strategies. Med. Res. Rev. 2010; 30, 708-749.
Go to original source...
Go to PubMed...
- Weaver L., Michels H. T., Keevil C. W. Survival of Clostridium difficile on copper and steel: futuristic options for hospital hygiene. J. Hosp. Infect. 2008; 68, 145-151.
Go to original source...
Go to PubMed...
- Mehtar S., Wiid I., Todorov S. D. The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in vitro study. J. Hosp. Infect. 2008; 68, 45-51.
Go to original source...
Go to PubMed...
- Noyce J. O., Michels H., Keevil C. W. Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment. J. Hosp. Infect. 2006; 63, 289-297.
Go to original source...
Go to PubMed...
- Noyce J. O., Michels H., Keevil C. W. Inactivation of influenza A virus on copper versus stainless steel surfaces. Appl. Environ. Microbiol. 2007; 73, 2748-2750.
Go to original source...
Go to PubMed...
- Borkow G., Gabbay J. Biocidal textiles can help fight nosocomial infections. Med. Hypotheses 2008; 70, 990-994.
Go to original source...
Go to PubMed...
- Gabbay J., Borkow G., Mishal J., Magen E., Zatcoff R., Shemer-Avni Y. Copper oxide impregnated textiles with potent biocidal activities. J. Ind. Text. 2006; 35, 323-335.
Go to original source...
- Mumcuoglu K. Y., Gabbay J., Borkow G. Copper oxide-impregnated fabrics for the control of house dust mites. Int. J. Pest Manage. 2008; 54, 235-240.
Go to original source...
- Zatcoff R. C., Smith M. S., Borkow G. Treatment of tinea pedis with socks containing copper-oxide impregnated fibers. Foot. 2008; 18, 136-141.
Go to original source...
Go to PubMed...
- Lin Y. E., Vidic R. D., Stout J. E., Yu V. L. Legionella in water distribution systems. J. AWWA. 1998; 90, 112-121.
Go to original source...
- Rohr U., Weber S., Selenka F., Wilhelm M. Impact of silver and copper on the survival of amoebae and ciliated protozoa in vitro. Int. J. Hyg. Envir. Heal. 2000; 203, 87-89.
Go to original source...
Go to PubMed...
- Cachafeiro S. P., Naveira I. M., García I. G. Is copper-silver ionisation safe and effective in controlling legionella? J. Hosp. Infect. 2007; 67, 209-216.
Go to original source...
Go to PubMed...
- Gorter R. W., Butorac M., Cobian E. P. Examination of the cutaneous absorption of copper after the use of copper-containing ointments. Am. J. Ther. 2004; 11, 453-458.
Go to original source...
Go to PubMed...
- Mulligan A. M., Wilson M., Knowles J. C. The effect of increasing copper content in phosphate-based glasses on biofilms of Streptococcus sanguis. Biomaterials 2003; 24, 1797-1807.
Go to original source...
Go to PubMed...
- Faúndez G., Troncoso M., Navarrete P., Figueroa G. Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol. 2004; 4, 7p.
Go to original source...
Go to PubMed...
- Hassan A. A., Shoukary N. M., Ismail N. M. Efficacy of temperature, and two commonly used molluscicides and fertilizers on Fasciola gigantica eggs. J. Egypt. Soc. Parasitol. 2008; 38, 621-634.
- Borkow G., Zhou S. S., Page T., Gabbay J. A novel anti-influenza copper oxide containing respiratory face mask. PLoS ONE. www.plosone.org. 2010; 5, e11295.
Go to original source...
Go to PubMed...
- La Torre A., Talocci S., Spera G., Valori R. Control of downy mildew on grapes in organic viticulture. Commun. Agric. Appl. Biol. Sci. 2008; 73, 169-178.
- Schultz T. P., Nicholas D. D., Preston A. F. A brief review of the past, present and the future of wood preservation. Pest. Manag. Sci. 2007; 63, 784-788.
Go to original source...
Go to PubMed...
- Ragab F., Shoukry N.M. Influence of certain fertilizers on the activity of some molluscicides against Biomphalaria alexandrina and Lymnaea natalensis snails. J. Egypt. Soc. Parasitol. 2006; 36, 959-977.
- UK Marine Special Areas of Conservation. Copper-based antifouling paints. www.ukmarinesac.org.uk/activities/ports/ph4_3_1.htm (27.. 018).
- Cooney T. E. Bactericidal activity of copper and noncopper paints. Infect. Cont. Hosp. Ep. 1995; 16, 444-450.
Go to original source...
Go to PubMed...
- Cooney J. J., Tang R. J. Quantifying effects of antifouling paints on microbial biofilm formation. Method. Enzymol. 1999; 310, 637-644.
Go to original source...
Go to PubMed...