JOURNAL OF THE CZECH PHARMACEUTICAL SOCIETY AND THE SLOVAK PHARMACEUTICAL SOCIETY

Čes. slov. farm. 2015, 64(5):159-172 | DOI: 10.36290/csf.2015.035

Methods used in pharmaceutical technology to increase bioavailability of poorly soluble drugs after oral administration

Barbora Vraníková, Jan Gajdziok*
Ústav technologie léků FaF VFU, Brno

Bioavailability increasing of poorly soluble drugs has become one of the main topics of modern pharmaceutical technology. Many methods based on the chemical modification, physical modification or new technological processes have been already used to improve bioavailability. Some of these methods (e.g. micronization, preparation of solid dispersions, formulation of an inclusion complex, etc.) have been for many years successfully used by pharmaceutical companies. On the other hand, methods such as liquisolid system and self-emulsifying drug delivery systems are still in the early stages of their development. It is expected that this novel methods could play a significant role in the preparation of modern dosage forms. The aim of this paper is to provide the summary of methods improving bioavailability of poorly soluble drugs used in the field of pharmaceutical technology.

Keywords: bioavailability; poorly soluble drugs; micronization; solid dispersions; self-emulsifying drug delivery systems

Received: September 2, 2015; Accepted: October 12, 2015; Published: May 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Vraníková B, Gajdziok J. Methods used in pharmaceutical technology to increase bioavailability of poorly soluble drugs after oral administration. Čes. slov. farm. 2015;64(5):159-172. doi: 10.36290/csf.2015.035.
Download citation

References

  1. Yazdanian M., Briggs K., Jankovsky C., Hawi A. The "high solubility" definition of the current FDA guidance on biopharmaceutical classification system may be too strict for acidic drugs. Pharm. Res. 2004; 21, 293-299. Go to original source... Go to PubMed...
  2. Yu L. X., Amidon G. L., Polli J. E., Zhao H., Mehta M. U., Conner D. P., Shah V. P., Lesko L. J., Chen M., Lee V. H. L., Hussain A. S. Biopharmaceutics Classification System: The Scientific Basis for Biowaiver Extensions. Pharm. Res. 2002; 19, 921-925. Go to original source... Go to PubMed...
  3. Okáčová L., Vetchý D., Franc A., Rabišková M., Kratochvíl B. Zvýšení biodostupnosti těžce rozpustných léčivých látek jejich modifikací. Chem. Listy 2010; 104, 21-26.
  4. Okáčová L., Vetchý D., Franc A, Rabišková M. Zvýšení biodostupnosti těžce rozpustných léčivých látek technologickými postupy usnadňujícími jejich rozpouštění. Chem. Listy 2011; 105, 34-40.
  5. Rowe R. C., Sheskey P. J., Owen S. C. Handbook of Pharmaceutical Excipients. 5. vyd. London: Pharmaceutical Press 2006.
  6. Kawakami K., Oda N., Miyoshi K., Funaki T., Ida Y. Solubilization behavior of a poorly soluble drug under combined use of surfactants and cosolvents. Eur. J. Pharm. Sci. 2006; 28, 7-14. Go to original source... Go to PubMed...
  7. Komárek P., Rabišková M. Technologie léků. 3. přepracované a doplněné vydání. Praha: Galén 2006.
  8. Seedher N., Kanojia M. Co-solvent solubilization of some poorly-soluble antidiabetic drugs. Pharm. Dev. Technol. 2009; 14, 185-192. Go to original source... Go to PubMed...
  9. Sonali J., Kamaldeep Y., Bhumika S., Sanjay J., Kumar M. R. Hydrotropy: A novel approach in estimation of poorly aqueous soluble drugs by TLC. International Journal of Pharmacy and Pharmaceutical Sciences 2013; 5, 176-178.
  10. Srinivas V., Rodley G. A., Ravikumar K., Robinson W. T., Turnbull M. M., Balasubramanian D. Molecular organization in hydrotrope assemblies. Langmuir 1997; 13, 3235-3239. Go to original source...
  11. Janakiraman B., Sharma M. M. Enhancing rates of multiphase reactions through hydrotropy. Chem. Eng. Sci. 1985; 40, 2156-2158. Go to original source...
  12. Patil A. E., Devtalu S. V., Bari M. M., Barhate S. D. A review on: Novel solubility enhancement technique hydrotropy. Indo American Journal of Pharmaceutical Research. 2013; 3, 4670-4679.
  13. Lee J., Lee S. C., Acharya G., Chang C. J., Park K. Hydrotropic solubilization of paclitaxel: analysis of chemical structures for hydrotropic property. Pharm. Res. 2003; 20, 1022-1030. Go to original source... Go to PubMed...
  14. Rangel-Yagui C. O., Pessoa A. Jr., Travares L. C. Micellar solubilization of drugs. J. Pharm. Pharm. Sci. 2005; 8, 147-165.
  15. Sikarra D., Shukla V., Kharia A. A., Chatterjee D. P. Enhancement of poorly soluble drugs: An overview. Journal of Medical Pharmaceutical and Allied Sciences. 2012; 1, 1-22. Go to original source...
  16. Atanacković M., Posa M., Heinle H., Gojković-Bukarica L., Cvejić J. Solubilization of resveratrol in micellar solutions of different bile acids. Colloids Surf. B. Biointerfaces 2009; 72, 148-154. Go to original source... Go to PubMed...
  17. Rangel-Yagui C. O., Hsu H. W. L., Pessoa A. Jr., Travares L. C. Micellar solubilization of ibuprofen - influence of surfactant head groups on the extent of solubilization. Rev. Bras. Cienc. Farm. 2005; 41, 237-246. Go to original source...
  18. Hagan S. A., Coombes A. G. A., Garnett M. C., Dunn S. E., Davies M. C., Illum L., Davis S. S. Polylactide-poly(ethylene glycol) copolymers as drug delivery systems. 1. Characterization of water dispersible micelle-forming systems. Langmuir 1996; 12, 2153-2161. Go to original source...
  19. Blondino F. E., Byron P. R. Surfactant dissolution and water solubilization in chlorine-free liquifield gas propellants. Drug Dev. Ind. Pharm. 1998; 24, 935-945. Go to original source... Go to PubMed...
  20. Vraníková B., Gakdziok J. Biologická dostupnost léčiva a možnosti jejího ovlivňování. Ces. slov. Farm. 2015; 64, 7-13. Go to original source...
  21. Dvořáčková K. Principy uvolňování léčiv z perorálních matricových tablet obsahujících hypromelosu. Chem. Listy 2009; 103, 66-72.
  22. Lindahl A., Ungell A. L., Knutson L., Lennernäs H. Characterization of fluids from the stomach and proximal jejunum in men and women. Pharm. Res. 1997; 14, 497-502. Go to original source... Go to PubMed...
  23. Zhou D., Qui Y. Oral absorption and the biopharmaceutics classification systém. Journal of Validation Technology 2009; 15, 62-72. Go to original source... Go to PubMed...
  24. Fallingborg J. Intraluminal pH of the human gastrointestinal tract. Dan. Med. Bull. 1999; 46, 183-196.
  25. Amaral M. H., Lobo J. M. S., Ferreira D. C. Effect of hydroxypropyl methylcellulose and hydrogenated castor oil on naproxen release from sustained-release tablets. AAPS PharmSciTech. 2001; 2, 14-21. Go to original source... Go to PubMed...
  26. Jinno J., Kamada N., Miyake M., Yamada K., Mikai T., Odomi M., Toguchi H., Liversidge G. G., Higaki K., Kimura T. Effect of particle size reduction on dissolution and oral absorption of poorly water-soluble drug, cilostazol, in beagle dogs. J. Control. Release 2006; 111, 56-64. Go to original source... Go to PubMed...
  27. Vandana K. R., Raju Y. P., Chowdary V. H., Sushma M., Kumar V. N. An overview on in situ micronization technique - An emerging novel concept in advanced drug delivery. Saudi. Pharm. J. 2014; 22, 283-289. Go to original source... Go to PubMed...
  28. Serrano D. R., Gallagher K. H., Healy A. M. Emerging nanonisation technologies: tailoring crystalline versus amorphous nanomaterials. Cur. Top. Med. Chem. 2015; 15, 2327-2340. Go to original source... Go to PubMed...
  29. Rasenack N., Müller B. W. Micron-size drug particles: common and novel micronization techniques. Pharm. Dev. Technol. 2004; 9, 1-13. Go to original source... Go to PubMed...
  30. Han X., Ghoroi C., To D., Chen Y., Davé R. Simultaneous micronization and surface modification for improvement of flow and dissolution of drug particles. Int. J. Pharm. 2011; 415, 185-195. Go to original source... Go to PubMed...
  31. Merisko-Liversidge E., Sarpotdar P., Bruno J., Hajj S., Wei L., Peltier N., Rake J., Shaw J. M., Pugh S., Polin L., Jones J., Corbett T., Cooper E., Liversifge G. G. Formultion and antitumor activity evaluation of nanocrystalline suspensions of poorly soluble anticancer drugs. Pharm. Res. 1996; 13, 272-278. Go to original source... Go to PubMed...
  32. Tao J., Sun Y., Zhang G. G., Yu L. Solubility of small-molecule crystals in polymers: D-mannitol in PVP, indomethacin in PVP/VA, and nifedipine in PVP/VA. Pharm. Res. 2009; 26, 855-864. Go to original source... Go to PubMed...
  33. Steckel H., Rasenack N., Müller B. W. In-situ-micronization of disodium cromoglycate for pulmonary delivery. Eur. J. Pharm. Biopharm. 2003; 55, 173-180. Go to original source... Go to PubMed...
  34. Rasenack N., Steckel H., Müller B. W. Micronization of anti.inflamatory drugs for pulmonary delivery by a controlled crystallization process. J. Pharm. Sci. 2003; 92, 35-44. Go to original source... Go to PubMed...
  35. Steckel H., Rasenack N., Villax P., Müller B. W. In vitro characterization of jet-milled and in-situ-micronized fluticasone-17- -propionate. Int. J. Pharm. 2003; 258, 65-75. Go to original source... Go to PubMed...
  36. Bajerová M., Gajdziok J., Dvořáčková K., Masteiková R., Kollár P. Polosyntetické deriváty celulosy jako základ hydrofilních gelových systémů. Čes. slov. Farm. 2008; 57, 63-69.
  37. Rasenack N., Müller B. W. Dissolution rate enhancement by in situ micronization of poorly water-soluble drugs. Pharm. Res. 2002; 19, 1894-1900. Go to original source... Go to PubMed...
  38. Kim Y. H., Shing K. S. Supercritical fluid-micronized ipratropium bromide for pulmonary drug delivery. Powder Technol. 2008; 182, 25-32. Go to original source...
  39. Yildiz N., Tuna ŞŞ., Döker O, Çalimli A. Micronization of salicylic acid and taxol (paclitaxel) by rapid expansion of supercritical fluids (RESS). The Journal of Supercritical Fluids. 2007; 41, 440-451. Go to original source...
  40. Zhiyi L., Jingzhi J., Xuewu L., Huihua T., Wei W. Experimental investigation on the micronization of aqueous cefadroxil by supercritical fluid technology. The Journal of Supercritical Fluids 2009; 48, 247-252. Go to original source...
  41. Perrut M., Jung J., Leboeuf F. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes. Part I: Micronization of neat particles. Int. J. Pharm. 2005; 288, 3-10. Go to original source... Go to PubMed...
  42. Jung J., Perrut M. Particle design using supercritical fluids: Literature and patent survey. The Journal of Supercritical Fluids 2001; 20, 179-219. Go to original source...
  43. Türk M., Hils P., Helfgen B., Schaber K., Martin H. J., Wahl M. A. Micronization of pharmaceutical substances by the Rapid Expansion of Supercritical Solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents. The Journal of Supercritical Fluids. 2002; 22, 75-84. Go to original source...
  44. Boonnoun P., Nerome H., Machmudah S., Goto M., Shotipruk A. Supercritical anti-solvent micronization of marigold-derived lutein dissolved in dichloromethane and ethanol. The Journal of Supercritical Fluids. 2013; 77, 103-109. Go to original source...
  45. Charoenchaitrakool M., Dehghani F., Foster N. R. Micronization by rapid expansion of supercritical solutions to enhance the dissolution rates of poorly water-soluble pharmaceuticals. Ind. Eng. Chem. Res. 2000; 39, 4794-4802. Go to original source...
  46. Young T. J., Mawson S., Johnston K. P., Henriksen I. B., Pace G. W., Mishra A. K. Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs. Biotechnol. Prog. 2000; 16, 402-407. Go to original source... Go to PubMed...
  47. Won D. H., Kim M. S., Lee S., Park J. S., Hwang S. J. Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process. Int. J. Pharm. 2005; 301, 199-208. Go to original source... Go to PubMed...
  48. Zhang H. X., Wang J. X., Zhang Z. B., Le Y., Shen Z. G., Chen J. F. Micronization of atorvastatin calcium by antisolvent precipitation process. Int. J. Pharm. 2009; 374, 106-113. Go to original source... Go to PubMed...
  49. Steckel H., Brandes H. G. A novel spray-drying technique to produce low density particles for pulmonary delivery. Int. J. Pharm. 2004; 278, 187-195. Go to original source... Go to PubMed...
  50. Yi T., Wan J., Xu H., Yang X. A new solid self-microemulsifying formulation prepared by spray-drying to improve the oral bioavailability of poorly water soluble drugs. Eur. J. Pharm. Biopharm. 2008; 70, 439-444. Go to original source... Go to PubMed...
  51. Dollo G., Le Corre P., Guérin A., Chevanne F., Burgot J. L., Leverge R. Spray-dried redispersible oil-in-water emulsion to improve oral bioavailability of poorly soluble drugs. Eur. J. Pharm. Sci. 2003; 19, 273-280. Go to original source... Go to PubMed...
  52. Kim J. S., Kim M. S., Park H. J., Jin S. J., Lee S., Hwang S. J. Physicochemical properties and oral bioavailability of amorphous atorvastatin hemi-calcium using spray-drying and SAS process. Int. J. Pharm. 2008; 359, 211-219. Go to original source... Go to PubMed...
  53. SÚKL - Státní ústav pro kontrolu léčiv. www.sukl.cz (13. 7. 2015)
  54. Rabišková M., Vetchý D. Orálně dispergovatelné tablety. Praktické lékárenství 2007; 4, 181-183.
  55. Nireesha G. R., Divya L., Sowmya C., Venkateshan N., Babu M. N., Lavakumar V. Lyophilization/Freeze drying - An review. International Journal of Novel Trends in Pharmaceutical Sciences 2013; 3, 87-98.
  56. Tang X., Pikal M. J. Design of freeze-drying processes for pharmaceuticals: Practical advice. Pharm. Res. 2004; 21, 191-200. Go to original source... Go to PubMed...
  57. Kasper J. C., Friess W. The freezing step in lyophilization: physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. Eur. J. Pharm. Biopharm. 2011; 78, 248-263. Go to original source... Go to PubMed...
  58. Wang W., Chen M., Chen G. Issues in freeze drying of aquesous solutions. Chinese J. Chem. Eng. 2010; 20, 551-559. Go to original source...
  59. Wanning S., Süverkrüp R., Lamprecht A. Pharmaceutical spray freeze drying. Int. J. Pharm. 2015; 488, 136-153. Go to original source... Go to PubMed...
  60. Kasper J. C., Winter G., Friess W. Recent advances and futher challenges in lyophilization. Eur. J. Pharm. Biopharm. 2013; 85, 162-169. Go to original source... Go to PubMed...
  61. Carrier R. L., Miller L. A., Ahmed I. The utility of cyclodextrins for enhancing oral bioavailability. J. Control. Release 2007; 123, 78-99. Go to original source... Go to PubMed...
  62. Challa R., Ahuja A., Ali J., Khar R. K. Cyclodextrins in drug delivery: An updated review. AAPS PharmSciTech.l 2005; 6, 329-357. Go to original source... Go to PubMed...
  63. Uekama K., Otagiri M., Uemura Y., Fujinaga T., Arimori K., Matsuo N., Tasaki K., Sigii A. Improvement of oral bioavailability of prednisolone by beta-cyclodextrin complexation in humans. J. Phamacobiodyn. 1983; 6, 124-127. Go to original source... Go to PubMed...
  64. Ghorab M. K., Adeyeye M. C. Enhanced bioavailability of process-induced fast-dissolving ibuprofen congranulated with beta-cyclodextrin. J. Pharm. Sci. 2003; 92, 1690-1697. Go to original source... Go to PubMed...
  65. Barone J. A., Moskovitz B. L., Guarnieri J., Hassell A. E., Colaizzi J. L., Bierman R. H., Jessen L. Enhanced Bioavailability of itraconazole in hydroxypropyl-β-cyclodextrin solution versus capsules in healthy volunteers. Antimicrob. Agents. Chemother. 1998; 42, 1862-1865. Go to original source... Go to PubMed...
  66. Freedman K. A., Klein J. W., Crosson C. E. Beta-cyclodextrins enhance bioavailability of pilocarpine. Curr. Eye. Res. 1993; 12, 641-647. Go to original source... Go to PubMed...
  67. Miyake K., Arima H., Irie T., Hirayama F., Uekama K. Enhanced absorption of cyclosporine A by complexation with dimethyl-beta-cyclodextrin in bile duct-cannulated and noncannulated rats. Biol. Pharm. Bull. 1999; 22, 66-72. Go to original source... Go to PubMed...
  68. Uekama K. Design and evaluation of yclodextrine-based drug formulation. Chem. Pharm. Bull. 2004; 52, 900-915. Go to original source... Go to PubMed...
  69. Del Valle E. M. M. Cyclodextrins and their uses: a review. Process Biochem. 2004; 39, 1033-1046. Go to original source...
  70. Baden-Württemberg. http://www.ua-bw.de/pub/beitrag.asp?subid=0&Thema_ID=3&ID=1242&Pdf=No. (22. 7. 2015).
  71. Ghosh A., Biswas S., Ghosh T. Preparation and evaluation of silymarin β-cyclodextrin molecular inclusion complexes. J. Young Pharm. 2011; 3, 205-210. Go to original source... Go to PubMed...
  72. Gowardhane A. P., Kadam N. V., Dutta S. Review on enhancement of solubilization process. Journal of Pharmacy and Phytotherapeutics 2013; 2, 28-38. Go to original source...
  73. Wen X., Tan F., Jing Z., Liu Z. Preparation and study the 1:2 inclusion complex of carvediol with beta-cyclodextrin. J. Pharm. Biomed. Anal. 2004; 34, 517-523. Go to original source... Go to PubMed...
  74. Loftsson T., Brewster M. E. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 1996; 85, 1017-1025. Go to original source... Go to PubMed...
  75. Kraus T. Cyclodextriny. http://www.uochb.cas.cz/Zpravy/PostGrad2004/8_Kraus.pdf (22. 7. 2015).
  76. Vasconcelos T., Sarmento B., Costa P. Solid dispersions as strategy to improve oral bioavailability of poorly water soluble drugs. Drug. Discov. Today 2007; 12, 1068-1075. Go to original source... Go to PubMed...
  77. Sekiguchi K., Obi N. Studies on absorption of eutectic mixture. I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem. Pharm. Bull. 1961; 9, 866-872. Go to original source...
  78. Ford J. L., Rubinstein M. H. Preparation, properties and ageing of tablets prepared from the chlorpropamide-urea solid dispersion. Int. J. Pharm. 1981; 8, 311-322. Go to original source...
  79. Allen L. V., Levinson R. S., Martono D. D. Dissolution rates of hydrocortisone and prednisone utilizing sugar solid dispersion systems in tablet form. J. Pharm. Sci. 1978; 67, 979-981. Go to original source... Go to PubMed...
  80. Patel M. M., Patel D. M. Fast dissolving Valdecoxib tablets containing solid dispersion of Valdecoxib. Ind. J. Pharm. Sci. 2006; 68, 222-226. Go to original source...
  81. Dahima R., Pachori A., Netam S. Formulation and evaluation of mouth dissolving tablet containing amlodipine besylate solid dispersion. International Journal of ChemTech Research 2010; 2, 706-715.
  82. Law S. L., Lo W. Y., Lin F. M., Chaing C. H. Dissolution and absorption of nifedipine in polyethylene glycol solid dispersion containing phosphatidylcholine. Int. J. Pharm. 1992; 84, 161-166. Go to original source...
  83. Nazzal S., Guven N., Reddy I. K., Khan M. A. Preparation and characterization of coenzyme Q10-Eudragit solid dispersion. Drug Dev. Ind. Pharm. 2002; 28, 49-57. Go to original source... Go to PubMed...
  84. Verreck G., Six K., Van den Mooter G., Baert L., Peeters J., Brewster M. E. Characterization of solid dispersions of itroconazole and hydroxypropylmethylcellulose prepared by melt extrusion - Part I. Int. J. Pharm. 2003; 251, 165-174. Go to original source... Go to PubMed...
  85. Kohda Y., Kobayashi H., Baba Y., Yuasa H., Ozeki T., Kanaya Y., Sagara E. Controlled release of lidocaine hydrochloride from buccal mucosa-adhesive films with solid dispersion. Int. J. Pharm. 1997; 158, 147-155. Go to original source...
  86. Nagarsenker M. S., Meshram R. N., Ramprakash G. Solid dispersion of hydroxypropyl beta-cyclodextrin and ketorolac: enhancement of in-vitro dissolution rates, improvement in anti-inflammatory activity and reduction in ulcerogenicity in rats. J. Pharm. Pharmacol. 2000; 52, 949-956. Go to original source... Go to PubMed...
  87. van den Mooter G., Weuts I., De Ridder T., Blaton N. Evaluation of Inutec SP1 as a new carrier in the formulation of solid dispersions for poorly soluble drugs. Int. J. Pharm. 2006; 316, 1-6. Go to original source... Go to PubMed...
  88. Jagdale S., Patil S., Kuchekar B., Chabukswar A. Preparation and characterization of metformin hydrochloride - Compritol 888 ATO Solid Dispersion. J. Young. Pharm. 2011; 3, 197-204. Go to original source... Go to PubMed...
  89. Damian F., Blaton N., Naesens L., Balzarini J., Kinget R., Augustijns P., Van den Mooter G. Physicochemical characterization of solid dispersions of the antiviral agent UC-781 with polyethylene glycol 6000 and Gelucire 44/14. Eur. J. Pharm. Sci. 2000; 10, 311-322. Go to original source... Go to PubMed...
  90. Vyas V., Sancheti P., Karekar P., Shah M., Pore Y. Physicochemical characterization of solid dispersion systems of tadalafil with poloxamer 407. Acta Pharm. 2009; 59, 453-461. Go to original source... Go to PubMed...
  91. Dannenfelser R. M., He H., Joshi Y., Bateman S., Serajuddin A. T. Development of clinical dosage forms for a poorly water soluble drug I: Application of polyethylene glycol-polysorbate 80 solid dispersion carrier system. J. Pharm. Sci. 2004; 93, 1165-1175. Go to original source... Go to PubMed...
  92. Yüksel N., Karataş A., Ozkan Y., Savaşer A., Ozkan S. A., Baykara T. Enhanced bioavailability of piroxicam using Gelucire 44/14 and labrasol: in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm. 2003; 53, 453-459. Go to original source... Go to PubMed...
  93. Janssens S., Humbeeck J. V., Van den Mooter G. Evaluation of the formulation of solid dispersions by co-spray drying itraconazole with Inutec SP1, a polymeric surfactant, in combination with PVPPA 64. Eur. J. Pharm. Biopharm. 2008; 70, 500-505. Go to original source... Go to PubMed...
  94. Srinarong P., Hämäläinen S., Visser M. R., Hinrichs W. L., Ketolainen J., Frijlink H. W. Surface-active derivative of inulin (Inutec® SP1) is a superior carrier for solid dispersions with a high drug load. J. Pharm. Sci. 2011; 100, 2333-2342. Go to original source... Go to PubMed...
  95. Ohara T., Kitamura S., Kitagawa T., Terada K. Dissolution mechanism of poorly water-soluble drug from extended release solid dispersion system with ethylcellulose and hydroxypropylmethylcellulose. Int. J. Pharm. 2005; 302, 95-102. Go to original source... Go to PubMed...
  96. Otsuka M., Onoe M., Matsuda Y. Hygroscopic stability and dissolution properties of spray-dried solid dispersions of furosemide with Eudragit. J. Pharm. Sci. 1993; 82, 32-38. Go to original source... Go to PubMed...
  97. Ozeki T., Yuasa H., Kanaya Y. Application of the solid dispersion method to the controlled release of medicine. IX. Difference in the release of flurbiprofen from solid dispersions with poly(ethylene oxide) and hydroxypropylcellulose and the interaction between medicine and polymers. Int. J. Pharm. 1997; 155, 209-217. Go to original source...
  98. Ozeki T., Yuasa H, Kanaya Y. Controlled release from solid dispersion composed of poly(ethylene oxide) - Carbopol interpolymer complex with various cross-linking degrees of Carbopol. J. Control. Release. 2000; 63, 287-295. Go to original source... Go to PubMed...
  99. Vo C. L., Park C., Lee B. J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur. J. Pharm. Biopharm. 2013; 85, 799-813. Go to original source... Go to PubMed...
  100. Serajuddin A. T. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci. 1999; 88, 1058-1066. Go to original source... Go to PubMed...
  101. Leuner C., Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 2000; 50, 47-60. Go to original source... Go to PubMed...
  102. Zatloukal Z. Interaktivní práškové směsi. Čes. slov. Farm. 2004; 53, 165-171.
  103. Allahham A., Stewart P. J. Enhancement of the dissolution of indomethacin in interactive mixtures using added fine lactose. Eur. J. Pharm. Biopharm. 2007; 67, 732-742. Go to original source... Go to PubMed...
  104. Lohrmann M., Kappl M., Butt H. J., Urbanetz N. A., Lippold B. C. Adhesion forces in interactive mixtures for dry powder inhalers - Evaluation of a new measuring method. Eur. J. Pharm. Biopharm. 2007; 67, 579-586. Go to original source... Go to PubMed...
  105. Thiel W. J., Sberna F. J. Fluidized bed film coating of an interactive powder mixture to produce microencapsulated 2-5 μm particles. J. Pharm. Pharmacol. 1986; 38, 166-171. Go to original source... Go to PubMed...
  106. Gursoy R. N., Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed. Pharmacother. 2004; 58, 173-182. Go to original source... Go to PubMed...
  107. Tang B., Cheng G., Gu J. C., Xu C. H. Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms. Drug. Discov. Today. 2008; 13, 606-612. Go to original source... Go to PubMed...
  108. Hong J. Y., Kim J. K., Song Y. K., Park J. S., Kim C. K. A new self-emulsifying formulation of itraconazole with improved dissolution and oral absorption. J. Control. Release 2006; 110, 332-338. Go to original source... Go to PubMed...
  109. Gershanik T., Benita S. Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur. J. Pharm. Biopharm. 2000; 50, 179-188. Go to original source... Go to PubMed...
  110. Matuszewska B., Hettrick L., Bondi J. V., Storey D. E. Comparative bioavailability of L-683,453, a 5-alpha-reductase inhibitor, from a self-emulsifying drug delivery in Beagle dogs. Int. J. Pharm. 1996; 136, 147-154. Go to original source...
  111. Kommuru T. R., Gurley B., Khan M. A., Reddy I. K. Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int. J. Pharm. 2001; 212, 233-246. Go to original source... Go to PubMed...
  112. Jain S., Jain A. K., Pohekar M., Thanki K. Novel self-emulsifying formulation of quercetin for improved in vivo antioxidant potential: implications on drug-induced cardiotoxicity and nephrotoxicicty. Free. Radic. Biol. Med. 2013; 65, 117-130. Go to original source... Go to PubMed...
  113. Kohli K., Chopra S., Dhar D., Arora S., Khar R. K. Self-emulsifying drug delivery systems: an approach to enhance oral bioavailability. Drug. Discov. Today 2010; 15, 958-965. Go to original source... Go to PubMed...
  114. Kallakunta V. R., Bandari S., Jukanti R., Veerareddy P. R. Oral self emulsifying powder of lercanidipine hydrochloride: Formulation and evaluation. Powder. Technol. 2012; 221, 375-382. Go to original source...
  115. Rao S. V., Shao J. Self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of protein drugs I. Formulation development. Int. J. Pharm. 2008; 362, 2-9. Go to original source... Go to PubMed...
  116. Qi X., Wang L., Zhu J., Hu Z., Zhang J. Self-double-emulsifying drug delivery system (SDEDDS): A new way for oral delivery of drugs with high solubility and low permeability. Int. J. Pharm. 2011; 409, 245-251. Go to original source... Go to PubMed...
  117. Shanmugam S., Park J. H., Kim K. S., Piao Z. Z., Yong C. S., Choi H. G., Woo J. S. Enhanced bioavailability and retinal accumulation of lutein from self-emulsifying phospholipid suspension (SEPS). Int. J. Pharm. 2011; 412, 99-105. Go to original source... Go to PubMed...
  118. Niederquell A., Kuentz M. Proposal of stability categories for nano-dispersions obtained from pharmaceutical self-emulsifying formulations. Int. J. Pharm. 2013; 446, 70-80. Go to original source... Go to PubMed...
  119. Balakrishnan P., Lee B. J., Oh D. H., Kim J. O., Hong M. J., Jee J. P., Kim J. A., Yoo B. K., Woo J. S., Yong C.S., Choi H. G. Enhanced oral bioavailability of dexibuprofen by a novel solid self-emulsifying drug delivery system (SEDDS). Eur. J. Pharm. Biopharm. 2009; 72, 539-545. Go to original source... Go to PubMed...
  120. Abdalla A., Klein S., Mäder K. A new self-emulsifying drug delivery system (SEDDS) for poorly soluble drugs: Characterization, dissolution, in vitro digestion and incorporation into solid pellets. Eur. J. Pharm. Sci. 2008; 35, 457-464. Go to original source... Go to PubMed...
  121. Wang Z., Sun J., Wang Y., Liu X., LiuY., Fu Q., Meng P., He Z. Solid self-emulsifying nitrendipine pellets: Preparation and in vitro/in vivo evaluation. Int. J. Pharm. 2010; 383, 1-6. Go to original source... Go to PubMed...
  122. Zhao X., Zhou Y. Q., Potharaju S., Lou H., Sun H. M., Bruson E., Almoazen H., Johnson J. Development of a self micro-emulsifying tablet of cyclosporine A by the liquisolid compact technique. International Journal of Pharmaceutical Sciences and Research 2011; 2, 2299-2308.
  123. Kumar A., Sharma S., Kamble R. Self emulsifying drug delivery system (SEDDS): future aspects. International Journal of Pharmacy and Pharmaceutical Sciences 2010; 2, 7-13.
  124. Attama A. A., Nzekwe I. T., Nnamani P. O., Adikwu M. U., Onugu C. O. The use of solid self-emulsifying systems in the delivery of diclofenac. Int. J. Pharm. 2003; 262, 23-28. Go to original source... Go to PubMed...
  125. Singh A. K., Chaurasiya A., Awasthi A., Mishra G., Asati D., Khar R. K., Mukherjee R. Oral bioavailability enhancement of exemestane from self-microemulsifying drug delivery system (SMEDDS). AAPS Pharmscitech 2009; 10, 906-916. Go to original source... Go to PubMed...
  126. Khoo S. M., Humberstone A. J., Porter C. J. H., Edwards G. A., Charman W. N. Formulation design and bioavailability assessment of lipidic self-emulsifying formulations of halofantrine. Int. J. Pharm. 1998; 167, 155-164. Go to original source...
  127. Cuiné J. F., McEvoy C. L., Charman W. N., Pouton C. W., Edwards G. A., Benameur H., Porter C. J. Evaluation of the mmpact of surfactant digestion on the bioavailability of danazol after oral administration of lipidic self-emulsifying formulations to dogs. J. Pharm. Sci. 2008; 97, 995-1012. Go to original source... Go to PubMed...
  128. Atef E., Belmonte A. A. Formulation and in vitro and in vivo characterization of a phenytoin self-emulsifying drug delivery system (SEDDS). Eur. J. Pharm. Biopharm. 2008; 35, 257-263. Go to original source... Go to PubMed...
  129. Perlman M. E., Murdande S. B., Gumkowski M. J., Shah T. S., Rodricks C. M., Thornton-Manning J., Freel D., Erhart L. C. Development of a self-emulsifying formulation that reduces the food effect for torcetrapib. Int. J. Pharm. 2008; 351, 15-22. Go to original source... Go to PubMed...
  130. Patil P., Joshi P., Paradkar A. Effect of formulation variables on preparation and evaluation of gelled self-emulsifying drug delivery system (SEDDS) of ketoprofen. AAPS PharmSciTech. 2004; 5, 43-50. Go to original source... Go to PubMed...
  131. Oh D. H., Kang J. H., Kim D. W., Lee B. J., Kim J. O., Yong C. S., Choi H. G. Comparison of solid self-microemulsifying drug delivery system (solid SMEDDS) prepared with hydrophilic and hydrophobic solid carrier. Int. J. Pharm. 2011; 420, 412-418. Go to original source... Go to PubMed...
  132. Kale A. A., Patravale V. B. Design and evaluation of self-emulsifying drug delivery systems (SEDDS) of nimodipine. AAPS PharmSciTech. 2008; 9, 191-196. Go to original source... Go to PubMed...
  133. Kang B. K., Lee J. S., Chon S. K., Jeong S. Y., Yuk S. H., Khang G., Lee H. B., Cho S. H. Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int. J. Pharm. 2004; 274, 65-73. Go to original source... Go to PubMed...
  134. Tiwari R., Tiwari G., Rai A. K. Self-emulsifying drug delivery system: An approach to enhance solubility. Systematic Reviews in Pharmacy 2010; 1, 133-140. Go to original source...
  135. Craig D. Q. M., Barker S. A., Banning D., Booth S. W. An investigation into the mechanisms of self-emulsification using particle size analysis and low frequency dielectric spectroscopy. Int. J. Pharm. 1995; 114, 103-110. Go to original source...
  136. Tran P.H., Tran T. T., Piao Z. Z., Vo T. V., Park J. B., Lim J., Oh K. T., Rhee Y. S., Lee B. J. Physical properties and in vivo bioavailability in human volunteers of isradipine using controlled release matrix tablet containing self-emulsifying solid dispersion. Int. J. Pharm. 2013; 450, 79-86. Go to original source... Go to PubMed...
  137. Vraníková B., Franc A., Gajdziok J. Inovativní lékové formy pro těžce rozpustná léčiva. Remedi 2014; 24, 312-314.
  138. Kavitha K., Lova Raju K. N. S., Ganesh N. S., Ramesh B. Effect of dissolution rate by liquisolid compacts approach: An Overview. Der Pharmacia Lettre 2011; 3, 71-83.
  139. Gajdziok J., Vraníková B. Zvyšování biologické dostupnosti léčiv pomocí formulace liquisolid systémů. Čes. slov. Farm. 2015; 64, 55-66. Go to original source...
  140. Vraníková B., Gajdziok J., Vetchý D., Kratochvíl B., Seilerová L. Systémy kapalina v pevné fázi jako moderní trend zvyšování biologické dostupnosti léčiva. Chem. Listy 2013; 107, 681-687.
  141. Pudipeddi M., Serajuddin A. T. Trends in solubility of polymorphs. J. Pharm. Sci. 2005; 94, 929-939. Go to original source... Go to PubMed...
  142. Hancock B. C., Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm. Res. 2000; 17, 397-404. Go to original source... Go to PubMed...
  143. Savjani K. T., Gajjar A. K., Savjani J. K. Drug solubility: Importance and enhancement techniques. ISRN Pharm. 2012; 2012, 1-10. Go to original source... Go to PubMed...
  144. Mishra B., Sahoo J., Dixit P. K. Formulation and process optimization of naproxen nanosuspensions stabilized by hydroxy propyl methyl cellulose. Carbohydr. Polym. 2015; 127, 300-308. Go to original source... Go to PubMed...
  145. Xia D., Quan P., Piao H., Piao H., Sun S., Yin Y., Cui F. Preparation of stable nitrendipine nanosuspensions using the precipitation - ultrasonication method for enhancement of dissolution and oral bioavailability. Eur. J. Pharm. Sci. 2010; 40, 325-334. Go to original source... Go to PubMed...
  146. van Eerdenbrugh B., Froyen L., Martens J. A., Blaton N., Augustijns P., Brewster M., van den Mooter G. Characterization of physico-chemical properties and pharmaceutical performance of sucrose co-freeze-dried solid nanoparticulate powders of the anti-HIV agent loviride prepared by media milling. Int. J. Pharm. 2007; 338, 198-206. Go to original source... Go to PubMed...
  147. Xiong R., Lu W., Li J., Wang P., Xu R., Chen T. Preparation and characterization of intravenously injectable nimodipine nanosuspension. Int. J. Pharm. 2008; 350, 338-343. Go to original source... Go to PubMed...
  148. Jacobs C., Kayser O., Müller R. H. Nanosuspensions as a new approach for the formulation for the poorly soluble drug tarazepide. Int. J. Pharm. 2000; 196, 161-164. Go to original source... Go to PubMed...
  149. Kocbek P., Baumqartner S., Kristl J. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int. J. Pharm. 2006; 312, 179-186. Go to original source... Go to PubMed...
  150. Yano Y., Fujimoto T., Hidaka T. Method for producing microgranulated particle. US 5547683 A.
  151. Hu L., Tang X., Cui F. Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs. J. Pharm. Pharmacol. 2004; 56, 1527-1535. Go to original source... Go to PubMed...
  152. Müller R. H., Runge S., Ravelli V., Mehnert W., Thünemann A. F., Souto E. B. Oral bioavailability of cyclosporine: Solid lipid nanoparticles (SLN) versus drug nanocrystals. Int. J. Pharm. 2006; 317, 82-89. Go to original source... Go to PubMed...
  153. Mohammed A. R., Weston N., Coombes A. G., Fitzgerald M., Perrie Y. Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability. Int. J. Pharm. 2004; 285, 23-34. Go to original source... Go to PubMed...
  154. Chen Y., Lu Y., Chen J., Lai J., Sun J., HU F., Wu W. Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing a bile salt. Int. J. Pharm. 2009; 376, 153-160. Go to original source... Go to PubMed...
  155. Lindenberg M., Kopp S., Dressman J. B. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur. J. Pharm. Biopharm. 2004; 58, 265-278. Go to original source... Go to PubMed...
  156. Wu C. Y., Benet L. Z. Predicting drug disposition via application of BCS: Transport/ bbsorption/ elimination interplay and development of biopharmaceutics drug disposition classification system. Pharm. Res. 2005; 22, 11-23. Go to original source... Go to PubMed...
  157. Petersen S. B., Nolan G., Maher S., Rahbek U. L., Guldbrandt M., Brayden D. J. Evaluation of alkylmaltosides as intestinal permeation enhancers: Comparison between rat intestinal mucosal sheets and Caco-2 monolayers. Eur. J. Pharm. Sci. 2012; 47, 701-712. Go to original source... Go to PubMed...
  158. Thanou M., Verhoef J. C., Junginger H. E. Chitosan and its derivatives as intestinal absorption enhancers. Adv. Drug. Deliv. Rev. 2001; 50, 91-101. Go to original source... Go to PubMed...
  159. Neelam S., Puneet G., Arundhati B. Enhancement of intestinal absorption of poorly absorbed Ceftriaxone Sodium by using mixed micelles of Polyoxy Ethylene (20) Cetyl Ether & Oleic Acid as peroral absorption enhancers. Archives of Applied Science Research 2010; 2, 131-142.




Czech and Slovak Pharmacy

Madam, Sir,
please be aware that the website on which you intend to enter, not the general public because it contains technical information about medicines, including advertisements relating to medicinal products. This information and communication professionals are solely under §2 of the Act n.40/1995 Coll. Is active persons authorized to prescribe or supply (hereinafter expert).
Take note that if you are not an expert, you run the risk of danger to their health or the health of other persons, if you the obtained information improperly understood or interpreted, and especially advertising which may be part of this site, or whether you used it for self-diagnosis or medical treatment, whether in relation to each other in person or in relation to others.

I declare:

  1. that I have met the above instruction
  2. I'm an expert within the meaning of the Act n.40/1995 Coll. the regulation of advertising, as amended, and I am aware of the risks that would be a person other than the expert input to these sites exhibited


No

Yes

If your statement is not true, please be aware
that brings the risk of danger to their health or the health of others.