Čes. slov. farm. 2023, 72(4):190-200 | DOI: 10.36290/csf.2023.004
Synthesis, characterization, molecular docking studies of new alkyl derivatives of 5-(2-bromo-4-fluorophenyl)-4-ethyl-4H-1,2,4-triazole-3-thiol
- 1 Department of natural sciences for foreign students and toxicological chemistry, Zaporizhzhia, Ukraine
- 2 Department of biological chemistry, Zaporizhzhya, Ukraine
- 3 Department technologies, processing of livestock products and feeding, Vinnytsia National Agrarian University, Ukraine
- 4 Department of Pharmaceutical Chemistry, National Pirogov Memorial Medical University, Vinnitsia, Ukraine
The main goal of this article is to present the results of the synthesis of new alkyl derivatives of 5-(2-bromo4-fluorophenyl)-4-ethyl-4H-1,2,4-triazole-3-thiol and molecular docking studies against COX-1 and COX-2. Previous studies have established a wide range of biological activity of 1,2,4-triazole derivatives. Therefore, it was essential to determine how a new series of 1,2,4-triazole derivatives would provide potential anti-inflammatory activity. To reach the goal, raw alkyl derivatives of 5-(2-bromo-4-fluorophenyl)-4-ethyl-4H-1,2,4-triazole-3-thiols (
2a-2i) from 5-(2-bromo-4-fluorophenyl)-4-ethyl-4H-1,2,4-triazole3-thiol (
1e) were obtained. The structure of the synthesized compounds was confirmed by 1H-NMR elemental analyses. The individuality and purity of compounds were confirmed by the method of liquid chromatography-mass spectrometry. These compounds have a relatively simple synthesis scheme, which gives them an advantage in creating a potential drug, and the appearance of alkyl radicals in the molecule should positively affect pharmacokinetic indicators, stability, selectivity, and bioavailability. An in silico study was conducted for the synthesized compounds, namely molecular docking, in relation to the interaction with COX-1 and COX-2. Based on the selectivity indexes of binding modes observed for the selected compounds (
2e, 2g) with active COX-1 centers, it was found that compounds can reliably exhibit their anti-inflammatory effect through the prostaglandin biosynthesis pathway, inhibiting COX-1 instead of COX-2. The effect of hydrophobic interactions of alkyl groups of 1,2,4-triazole derivatives on changes in affinity and selectivity to COX-1 or COX-2 has also been proven. Therefore, derivatives of 1,2,4 are promising candidates for improvement, further study, and future development of new, more powerful antiinflammatory drugs for therapeutic use.
Keywords: 1,2,4-triazole; synthesis; molecular docking; anti-inflammatory activity; in silico
Received: March 20, 2022; Accepted: June 15, 2023; Published: April 1, 2023 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Laine L. Gastrointestinal effects of NSAIDs and coxibs. J. Pain Symptom Manage. 2003; 25(2), 32-40.
Go to original source...
Go to PubMed...
- Hawkey C., Skelly M. Gastrointestinal safety of selective COX-2 inhibitors. Curr. Pharm. Des. 2002; 8(12), 1077-1089.
Go to original source...
Go to PubMed...
- Van der Vijver R. J., van Laarhoven C. J. H. M., Lomme R. M. L. M., Hendriks T. Carprofen for perioperative analgesia causes early anastomotic leakage in the rat ileum. BMC Vet. Res. 2012; 8(1), 247.
Go to original source...
Go to PubMed...
- Mukherjee D. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA 2001; 286(8), 954.
Go to original source...
Go to PubMed...
- Vinogradova Y., Coupland C., Hippisley-Cox J. Exposure to cyclooxygenase-2 inhibitors and risk of cancer: Nested case-control studies. Br. J. Cancer 2011; 105(3), 452-459.
Go to original source...
Go to PubMed...
- Chen Z., Wang Z-C., Yan X-Q., Wang P-F., Lu X-Y., Chen L-W., Zhu H-L., Zhang H-W. Design, synthesis, biological evaluation and molecular modeling of dihydropyrazole sulfonamide derivatives as potential COX-1/COX-2 inhibitors. Bioorg. Med. Chem. Lett. 2015; 25(9), 1947-1951.
Go to original source...
Go to PubMed...
- Alegaon S.G., Hirpara M.B., Alagawadi K.R., Hullatti K.K., Kashniyal K. Synthesis of novel pyrazole-thiadiazole hybrid as potential potent and selective cyclooxygenase-2 (COX-2) inhibitors. Bioorg. Med. Chem. Lett. 2014; 24(22), 5324-5329.
Go to original source...
Go to PubMed...
- Gouda A., Ali H., Almalki W., Azim M., Abourehab M., Abdelazeem A. Design, synthesis, and biological evaluation of some novel pyrrolizine derivatives as Cox inhibitors with anti-inflammatory/analgesic activities and low ulcerogenic liability. Molecules 2016; 21(2), 201-221.
Go to original source...
Go to PubMed...
- Gotsulya A., Brytanova T. Synthesis, properties and biological potential some condensed derivatives 1,2,4-triazole. J. Fac. Pharm. Ankara Univ. 2022; 46(2), 308-321.
Go to original source...
- Fedotov S., Gotsulya A., Zaika Y., Brytanova T. Design, synthesis and molecular docking of some derivatives of 9-methylpyrazolo[1,5-d][1,2,4]triazolo[3,4-f][1,2,4]triazine-3-thiol. J. Fac. Pharm. Ankara Univ. 2023; 47(2), 336-348.
Go to original source...
- Ihnatova T., Kaplaushenko A., Frolova Y., Pryhlo E. Synthesis and antioxidant properties of some new 5-phenethyl-3-thio-1,2,4-triazoles. Pharmacia 2021; 68(1), 129-133.
Go to original source...
- Varynskyi B. A., Scherback M. A., Kaplaushenko A. G., Yurchenko I. A. The study of thione-thiol tautomerism of 4-amino-5-(4-nitrophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione by HPLC-MS method. J. Chem. Pharm. Res. 2014; 6(5), 1342-1350.
- Sameliuk Y., Kaplaushenko A., Diakova F., Ostretsova L., Nedorezaniuk N., Gutyj B. Prospects For the Search For New Biologically Active Compounds Among the Derivatives of the Heterocyclic System of 1,2,4-Triazole. Hac. Univ. J. Fac. Pharm. 2022; 42(3), 175-186.
Go to original source...
- Shcherbyna R., Parchenko V., Martynyshyn V., Hunchak V. Evaluation of acute and subacute toxicity of oil liniment based on 4-((5-(decylthio)-4-methyl-4H-1,2,-4-triazol-3-yl)methyl)morpholine. Ank. Univ. Ecz. Fak. Derg. 2018; 42(1), 43-52.
Go to original source...
- Frolova Y., Kaplaushenko A., Yurii S., Romanina D., Morozova L. Investigation of the antimicrobial and antifungal activities of some 1,2,4-triazole derivatives. Ces. Slov. Farm. 2022; 71(4), 151-160.
Go to original source...
- Safonov A. A. Derivatives of 3-(alkylthio)-5-(thiophen2-ylmethyl)-4H-1,2,4-triazol-4-amines as anti-fatigue substances. Indones. J. Pharm. 2018; 29(3), 167-172.
Go to original source...
- Zvenihorodska T., Hotsulia A., Kravchenko S., Fedotov S., Kyrychko B. Synthesis and antimicrobial action of 1,2,4-triazole derivatives containing theophylline and 1,3,4-thiadiazole fragments in their structure. Afr. J. Biomed. Res. 2021; 24(1), 159-163.
- Karpun Y., Polishchuk N. Synthesis and antimicrobial activity of S-substituted derivatives of 1,2,4-triazol-3-thiol. SciR Pharm. Sci. 2021; 31(3), 64-69.
Go to original source...
- Shcherbyna R., Panasenko O., Polonets O., Nedorezaniuk N., Duchenko M. Synthesis, antimicrobial and antifungal activity of ylidenhydrazides of 2-((4-R-5-R1-4H-1,2,4-triazol-3-yl)thio)acetaldehydes. Ank. Univ. Ecz. Fak. Derg. 2021; 45(3), 504-514.
Go to original source...
- Shcherbyna R., Pruhlo Y., Duchenko M., Kulagina M., Kudria V., Vashchuk V. Evaluation of antioxidant activity of 1, 2, 4-triazole derivatives with morpholine moiety. Hac. Univ. J. Fac. Pharm. 2022; 42(2), 73-82.
Go to original source...
- Safonov A., Demianenko D., Vashchyk Y., Larianovska Y., Lytkin D., Shcherbyna R., Ocheretniuk A., Romanova S. Histological study of a corrective influence of sodium 2-((4-amino-5-(thiophen-2-ylmethyl)-4H-1,2,-4-triazol-3-yl)thio)acetate on the state of rats liver under conditions of acute immobilization stress. Ank. Univ. Ecz. Fak. Derg. 2022; 46(2), 330-341.
Go to original source...
- Karpun Y., Fedotov S., Khilkovets A., Karpenko Y., Parchenko V., Klochkova Y., Bila Y., Lukina I., Nahorna N., Nahornyi V. An in silico investigation of 1,2,4-triazole derivatives as potential antioxidant agents using molecular docking, MD simulations, MM-PBSA free energy calculations and ADME predictions. Pharmacia 2023; 70(1), 139-153.
Go to original source...
- Shcherbyna R., Vashchyk Y. The research of 1,2,4-triazole derivatives hepatoprotective activity under tetracycline and infectious hepatitis. Ank. Univ. Ecz. Fak. Derg. 2019; 43(2), 135-146.
Go to original source...
- Shcherbyna R. An investigation of the pharmacokinetics and potential metabolites of potassium 2-((4-amino5-(morfolinometyl)-4H-1,2,4-triazol-3-yl)thio) acetate on rats. Ank. Univ. Ecz. Fak. Derg. 2020; 44(2), 233-241.
Go to original source...
- Vashchyk Y., Shcherbyna R., Parchenko V., Bushueva I., Gutyj B., Fotina H., Fotina T., Stronskyi Y. Histological study of a corrective influence of a compound potassium 2-((4-amino-5-(morpholinomethyl)-4H-1,2,4-triazol-3-yl)thio)acetate (PKR-173) on the state of chicken's liver under infection by Pseudomonas aeruginosa. Ank. Univ. Ecz. Fak. Derg. 2020; 44(1), 1-17.
Go to original source...
- Tariq S., Kamboj P., Alam O., Amir M. 1,2,4-Triazole-based benzothiazole/benzoxazole derivatives: Design, synthesis, p38α MAP kinase inhibition, anti-inflammatory activity and molecular docking studies. Bioorg. Chem. 2018; 81, 281-290.
Go to original source...
Go to PubMed...
- Hamoud M. M. S., Osman N.A., Rezq S., Abd El-wahab H. A. A., Hassan A. E. A., Abdel-Fattah H. A., Romero D. G., Ghanim A. M. Design and synthesis of novel 1,3,4-oxadiazole and 1,2,4-triazole derivatives as cyclooxygenase-2 inhibitors with anti-inflammatory and antioxidant activity in LPS-stimulated raw264.7 macrophages. Bioorg. Chem. 2022; 124, 105-808.
Go to original source...
Go to PubMed...
- Paprocka R., Kołodziej P., Wiese-Szadkowska M., Helmin-Basa A., Bogucka-Kocka A. Evaluation of anthelmintic and anti-inflammatory activity of 1,2,4-triazole derivatives. Molecules 2022; 27(14), 44-88.
Go to original source...
Go to PubMed...
- Mohassab A. M., Hassan H. A., Abdelhamid D., Abdel-Aziz M., Dalby K. N., Kaoud T. S. Novel quinoline incorporating 1,2,4-triazole/oxime hybrids: Synthesis, molecular docking, anti-inflammatory, Cox Inhibition, ulceroginicity and histopathological investigations. Bioorg. Chem. 2017; 75, 242-259.
Go to original source...
Go to PubMed...
- Li S-M., Tsai S-E., Chiang C-Y., Chung C-Y., Chuang T-J., Tseng C-C., Jiang W-P., Huang G-J., Lin C-Y., Yang Y-C., Fuh M-T., Wong F.-F. New methyl 5-(halomethyl)-1-aryl-1H-1,2,4-triazole-3-carboxylates as selective COX-2 inhibitors and anti-inflammatory agents: Design, synthesis, biological evaluation, and Docking Study. Bioorg. Chem. 2020; 104,104-333.
Go to original source...
Go to PubMed...
- Malkowski M. G., Ginell S. L., Smith W. L., Garavito R. M. The productive conformation of arachidonic acid bound to prostaglandin synthase. Science 2000; 289(5486), 1933-1937.
Go to original source...
Go to PubMed...
- Rosignoli S., Paiardini A. DockingPie: a consensus docking plugin for PyMOL. Bioinformatics 2022; 38(17), 4233-4234.
Go to original source...
Go to PubMed...
- Hevener K. E., Zhao W., Ball D. M., Babaoglu K., Qi J., White S. W., Lee R. E. Validation of Molecular Docking Programs for Virtual Screening against Dihydropteroate Synthase. J. Chem. Inf. Model 2009; 49(2), 444-460.
Go to original source...
Go to PubMed...
- Costa J. S., Costa K. S., Cruz J. V., Ramos R. S., Silva L. B., Brasil D. S. B., Silva C. H. T.P., Santos C. B. R., Macedo W. J. C. Virtual Screening and Statistical Analysis in the Design of New Caffeine Analogues Molecules with Potential Epithelial Anticancer Activity. Int. J. Mol. Sci. 2018; 24(5), 576-594.
Go to original source...
Go to PubMed...
- Dassault Système. 3DS Discovery Studio Visualizer. https//discover.3ds.com/discovery-studio-visualizer-down load. (01.03.2023).
- Alamri M. A., Tahir ul Qamar M., Mirza M. U., Bhadane R., Alqahtani S. M., Muneer I., Froeyen M., Salo-Ahen O. M. H. Pharmacoinformatics and molecular dynamics simulation studies reveal potential covalent and FDA-approved inhibitors of SARS-COV-2 main protease 3CLpro. J. Biomol. Struct. Dyn. 2020; 39(13), 4936-4948.
Go to original source...
Go to PubMed...
- Veber D. F., Johnson S. R., Cheng H. Y., Smith B. R., Ward K. W., Kopple K. D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002; 45(12), 2615-2623.
Go to original source...
Go to PubMed...
- Szabó G., Fischer J., Kis-Varga Á., Gyires K. New celecoxib derivatives as anti-inflammatory agents. J. Med. Chem. 2008; 51(1), 142-147.
Go to original source...
Go to PubMed...
- Selinsky B. S., Gupta K., Sharkey C. T., Loll P. J. Structural Analysis of NSAID Binding by Prostaglandin H2 Synthase: Time-Dependent and Time-Independent Inhibitors Elicit Identical Enzyme Conformations. Biochemistry 2001; 40(17), 5172-5180.
Go to original source...
Go to PubMed...
- Sejdiu B. I., Tieleman D. P. COX-1 - lipid interactions: arachidonic acid, cholesterol, and phospholipid binding to the membrane binding domain of COX-1. bioRxiv. 2020; 1-29.
Go to original source...