JOURNAL OF THE CZECH PHARMACEUTICAL SOCIETY AND THE SLOVAK PHARMACEUTICAL SOCIETY

Čes. slov. farm. 2023, 72(3):132-140 | DOI: 10.5817/CSF2023-3-132

Optimization of spray-dried porous microparticles preparation for pulmonary delivery

Andrea Peštálová*, Hana Hořavová, Jan Gajdziok
Masarykova univerzita, Farmaceutická fakulta, Ústav farmaceutické technologie, Brno

Inhalation administration of dry powder particles is a common application route to achieve local and systemic drug effects. For pulmonary diseases, the deposition of drugs at the site of action is desirable. Thus, the parameters of the inhaled particles, especially their size, shape, or aerosolization, are essential for effective treatment. Suitable parameters can be achieved by choice of preparation method or excipients (carriers, porogens, or aerosolizing agents). This experiment aimed to prepare 11 batches of powder mixtures by spray drying, which differed in the carrier used and the amount of leucine or porogen. The aim was to optimize the formulation for drug binding concerning the requirements for pulmonary administration. The prepared particles were evaluated in terms of morphology, flow properties, porosity, and geometric and aerodynamic diameter. It was found that with increasing concentration of leucine, the bulk density of the particles decreased while the FPF value increased. Similarly, there was a decrease in MMAD. The batch containing 15% leucine was the most suitable. In determining the optimum porogen concentration for mannitol particles, the batch with its 1% gave the best results due to its adequate particle size compared to the other batches (MMAD 5.92 ± 1.32 μm), suitable porosity, and particle morphology. Thus, to formulate drug-loaded particles, it would be advisable to reduce the aerodynamic diameter of the particles, e.g., by spray drying process parameters.

Keywords: microparticles; Leucine; inhalation administration; spray drying; porogens
Grants and funding:

Práce vznikla za podpory projektu SVV MUNI/A/ 1140/2021.

Received: March 28, 2023; Accepted: April 26, 2023; Published: March 1, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Peštálová A, Hořavová H, Gajdziok J. Optimization of spray-dried porous microparticles preparation for pulmonary delivery. Čes. slov. farm. 2023;72(3):132-140. doi: 10.5817/CSF2023-3-132.
Download citation

References

  1. Hořavová H., Gajdziok J., Vetchý D. Typy a příprava lipozomálních přípravků pro plicní podání. Chem. Listy. 2020; 114, 322-328.
  2. Edwards D., A., Ben-Jebria A., Langer R. Recent advances in pulmonary drug delivery using large, porous inhaled particles. J. Appl. Physiol. 1998; 85, 379-385. Go to original source... Go to PubMed...
  3. Liang Z., Ni R., Zhou J., Mao S. Recent advances in controlled pulmonary drug delivery. Drug Discov. Today 2015; 20, 380-389. Go to original source... Go to PubMed...
  4. Karas J., Vetchý D., Gajdziok J. Dry powder particles for pulmonary application. Chem. Listy 2022; 116, 28-34. Go to original source...
  5. Gharse S., Fiegel J. Large porous hollow particles: lightweight champions of pulmonary drug delivery. Curr. Pharm. Des. 2016; 22, 2463-2469. Go to original source... Go to PubMed...
  6. Edwards D. A., Hanes J., Caponetti G., Hrkach J., Ben-Jebria A., Eskew M. L., Langer R. Large porous particles for pulmonary drug delivery. Science 1997; 276, 1868-1872. Go to original source... Go to PubMed...
  7. Yang Y., Bajaj N., Xu P., Ohn K., Tsifansky M. D., Yeo Y. Development of highly porous large PLGA microparticles for pulmonary drug delivery. Biomaterials 2009; 30, 1947-1953. Go to original source... Go to PubMed...
  8. Cai Y., Chen Y., Hong X., Liu Z., Yuan W. Porous microsphere and its applications. Int. J. Nanomedicine 2013; 8, 1111-1120. Go to original source... Go to PubMed...
  9. Kim H. U., Park H. I., Lee J. H., Lee E. S., Oh K. T., Yoon J. H., Youn Y. S. Pharmaceutical potential of gelatin as a pH-responsive porogen for manufacturing porous poly (D, L-lactic-co-glycolic acid) microspheres. Int. J. Pharm. Investig. 2010; 40, 245-250. Go to original source...
  10. Nasr M., Awad G. A., Mansour S., Al Shamy A., Mortada N. D. Hydrophilic versus hydrophobic porogens for engineering of poly (lactide-co-glycolide) microparticles containing risedronate sodium. Pharm. Dev. Technol. 2013; 18, 1078-1088. Go to original source... Go to PubMed...
  11. Emami F., Vatanara A., Vakhshiteh F., Kim Y., Kim T. W., Na D. H. Amino acid-based stable adalimumab formulation in spray freeze-dried microparticles for pulmonary delivery. J. Drug Deliv. Sci. Tech. 2019; 54, 101-249. Go to original source...
  12. Hoe S., Matinkhoo S., Boraey M., Ivey J., Shamsaddini-Shahrbabak A., Finlay W. H., Vehring R. Substitution of L-Leucine with D-Leucine in spray-dried respirable powders for control of Pseudomonas aeruginosa infection. In: 19th International Congress. International Society for Aerosols in Medicine. North Carolina USA: 2013.
  13. Schoubben A., Vivani R., Paolantoni M., Perinelli D. R., Gioiello A., Macchiarulo A., Ricci M. D-leucine microparticles as an excipient to improve the aerosolization performances of dry powders for inhalation. Eur. J. Pharm. Sci. 2019; 130, 54-64. Go to original source... Go to PubMed...
  14. Prota L., Santoro A., Bifulco M., Aquino R. P., Mencherini T., Russo P. Leucine enhances aerosol performance of naringin dry powder and its activity on cystic fibrosis airway epithelial cells. Int. J. Pharm. 2011; 412, 8-19. Go to original source... Go to PubMed...
  15. Český lékopis. 1. vydání. Praha: Grada Publishing 2017.
  16. Ungaro F., Giovino C., Coletta C., Sorrentino R., Miro A., Quaglia F. Engineering gas-foamed large porous particles for efficient local delivery of macromolecules to the lung. Eur. J. Pharm. Sci. 2010; 41, 60-70. Go to original source... Go to PubMed...
  17. You Y., Zhao M., Liu G., Tang X. Physical characteristics and aerosolization performance of insulin dry powders for inhalation prepared by a spray drying method. J. Pharm. Pharmacol. 2007; 59, 927-934. Go to original source... Go to PubMed...
  18. Zhou Q. T., Morton D. A., Heidi H. Y., Jacob J., Wang J., Li J., Chan H. K. Colistin powders with high aerosolisation efficiency for respiratory infection: preparation and in vitro evaluation. J. Pharm. Sci. 2013; 102, 3736-3747. Go to original source... Go to PubMed...
  19. Jong T., Li J., Morton D. A., Zhou Q. T., Larson I. Investigation of the changes in aerosolization behavior between the jet-milled and spray-dried colistin powders through surface energy characterization. J. Pharm. Sci. 2016; 105, 1156-1163. Go to original source... Go to PubMed...
  20. Chvatal A., Ambrus R., Party P., Katona G., Jójárt-Laczkovich O., Szabó-Révész P., Tsapis N. Formulation and comparison of spray dried non-porous and large porous particles containing meloxicam for pulmonary drug delivery. Int. J. Pharm. 2019; 559, 68-75. Go to original source... Go to PubMed...
  21. Li J., Zheng H., Qin L., Xu E. Y., Yang L., Zhang L., Mao S. In vitro - in vivo correlation of inhalable budesonide-loaded large porous particles for sustained treatment regimen of asthma. Acta Biomater. 2019; 96, 505-516. Go to original source... Go to PubMed...
  22. Lamy B., Serrano D. R., O'connell P., Couet W., Marchand S., Healy A. M., Tewes F. Use of leucine to improve aerodynamic properties of ciprofloxacin-loaded maltose microparticles for inhalation. Eur. J. Pharm. Res. 2019; 1, 2-11. Go to original source...




Czech and Slovak Pharmacy

Madam, Sir,
please be aware that the website on which you intend to enter, not the general public because it contains technical information about medicines, including advertisements relating to medicinal products. This information and communication professionals are solely under §2 of the Act n.40/1995 Coll. Is active persons authorized to prescribe or supply (hereinafter expert).
Take note that if you are not an expert, you run the risk of danger to their health or the health of other persons, if you the obtained information improperly understood or interpreted, and especially advertising which may be part of this site, or whether you used it for self-diagnosis or medical treatment, whether in relation to each other in person or in relation to others.

I declare:

  1. that I have met the above instruction
  2. I'm an expert within the meaning of the Act n.40/1995 Coll. the regulation of advertising, as amended, and I am aware of the risks that would be a person other than the expert input to these sites exhibited


No

Yes

If your statement is not true, please be aware
that brings the risk of danger to their health or the health of others.