Čes. slov. farm. 2021, 70(5):186-195 | DOI: 10.5817/CSF2021-5-186
Films from poly-γ-glutamic acid and poly-ε-lysine as the potential wound dressings - formulation, preparation and evaluation
- 1 Masarykova univerzita, Farmaceutická fakulta, Ústav farmaceutické technologie, Brno
- 2 Akademie medicíny, Litevská univerzita zdravotnických věd, Farmaceutická fakulta, Katedra technologie léků a sociální farmacie, Kaunas, Litva
Film wound dressings represent one of the options in wound therapy. Various polymers can be used for their production. Currently, research focuses on materials of natural origin, more friendly to the human body, which are in many cases able to participate actively in the wound healing process. These include polyamino acids of bacterial origin, substances that are biodegradable, non-toxic, and have a great potential for an application not only in the medical field. From the point of view of film wound dressing formulation, poly-γ-glutamic acid (PGA), as a film-forming agent, and poly-ε-lysine (PL), characterized by antimicrobial activity, are of interest from this group. Therefore, the aim of our experiment was to prepare films consisting of PGA or a combination of PGA and PL with the addition of different plasticizers. The films were prepared by solvent evaporation method and then evaluated for their organoleptic (appearance, colour, transparency, ease of handling), physicochemical (thickness, density, opacity, surface pH), and mechanical properties (tensile strength and tear resistance). As a result, films showing mutual compatibility between the two polymers were obtained, with satisfactory properties for wound application.
Keywords: films; technology; wound therapy; poly-γ-glutamic acid; poly-ε-lysine
Received: August 10, 2021; Accepted: September 21, 2021; Published: May 1, 2021 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Westgate S., Cutting K. F., DeLuca G., Asaad K. Collagen dressings made easy. Wounds UK 2012; 8(1), 1-4.
- Schmitz M., Mustafi N., Rogmans S., Kasparek S. Pilot- -study switchable film dressing & elderly skin/patients with chronic wounds: A non-interventional, non-placebo- controlled, national pilot study. Wound Med. 2020; 30, 100189.
Go to original source...
- Kunioka M. Biosynthesis and chemical reactions of poly (amino acid)s from microorganisms. Appl. Microbiol. Biotechnol. 1997; 47(5), 469-475.
Go to original source...
- Candela T., Fouet A. Poly-gamma-glutamate in bacteria. Mol. Microbiol. 2006; 60(5), 1091-1098.
Go to original source...
Go to PubMed...
- Nair P., Navale G. R., Dharne M. S. Poly-gamma-glutamic acid biopolymer: a sleeping giant with diverse applications and unique oppotunities for commercialization. Biomass Conver. Biorefin. 2021; 1-19.
Go to original source...
Go to PubMed...
- Kumar M. M. M., Xaver J. R., Gopalan N., Ramana K. V., Sharma R. K. Poly (gamma;-) Glutamic Acid: A Promising Biopolymer. Def. Life Sci. J. 2018; 3, 301-306.
Go to original source...
- Bajaj I., Singhal R. Poly (glutamic acid) - an emerging biopolymer of commercial interest. Bioresour. Technol. 2011; 102(10), 5551-5561.
Go to original source...
Go to PubMed...
- Pereira A. E. S., Sandoval-Herrera I. E., Zavala-Betancourt S. A., Oliveira H. C., Ledezma-Pérez A. S., Romero J., Fraceto L. F. γ-Polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: Characterization and evaluation of biological activity. Carbohydr. Polym. 2017; 157, 1862-1873.
Go to original source...
Go to PubMed...
- Sabbah M., Di Pierro P., Ruffo F., Schiraldi C., Alfano A., Cammarota M., Porta R. Glutamic Acid as Repeating Building Block for Bio-Based Films. Polymers 2020; 12(7), 1613.
Go to original source...
Go to PubMed...
- Shao Z., Fang S., Li Y., Chen J., Meng Y. Physicochemical properties and formation mechanism of electrostatic complexes based on ε-polylysine and whey protein: Experimental and molecular dynamics simulations study. Int. J. Biol. Macromol. 2018; 118, 2208- 2215.
Go to original source...
Go to PubMed...
- Zhang L., Li R., Dong F., Tian A., Li Z., Dai Y. Physical, mechanical and antimicrobial properties of starch films incorporated with ε-poly-l-lysine. Food Chem. 2015; 166, 107-114.
Go to original source...
Go to PubMed...
- Luz C., Calpe J., Saladino F., Luciano F. B., Fernandez- Franzón M., Mañes J., Meca G. Antimicrobial packaging based on ε-polylysine bioactive film for the control of mycotoxigenic fungi in vitro and in bread. J. Food Process. Preserv. 2018; 42(1), 1-6.
Go to original source...
Go to PubMed...
- Li S., Zhang L., Liu M., Wang X., Zhao G, Zong W. Effect of poly-ε-lysine incorporated into alginate-based edible coatings on microbial and physicochemical properties of fresh-cut kiwifruit. Postharvest Biol. Technol. 2017; 134, 114-121.
Go to original source...
- Chheda A. H., Vernekar M. R. A natural preservative ε-poly-L-lysine: fermentative production and applications in food industry. Int. Food Res. J. 2015; 22(1), 23-30.
- Fürsatz M., Skog M., Sivlér P., Palm E., Aronsson C., Skallberg A., Greczynski G., Khalaf H., Bengtsson T., Aili D. Functionalization of bacterial cellulose wound dressings with the antimicrobial peptide ε-poly-L- -lysine. Biom. Mater. 2018; 13(2), 1-11.
Go to original source...
Go to PubMed...
- Hoffmann E. M., Breitenbach A., Breitkreutz J. Advances in orodispersible films for drug delivery. Expert Opin. Drug Deliv. 2011; 8(3), 299-316.
Go to original source...
Go to PubMed...
- Vinklárková L., Masteiková R., Vetchý D., Doležel P., Bernatonienė J. Formulation of novel layered sodium carboxymethylcellulose film wound dressings with ibuprofen for alleviating wound pain. Biomed Res. Int. 2015; 2015, 1-11.
Go to original source...
Go to PubMed...
- Dixit R. P., Puthli S. P. Oral strip technology: overview and future potential. J. Control. Release 2009; 139(2), 94-107.
Go to original source...
Go to PubMed...
- Thomas S. Exudate-handling mechanism of the Cutimed ® cavity range of foam dressings. London: BSN Medical 2009. https://pdf4pro.com/view/exudate-handlingmechanisms-of-the-cutimed-153d42.html (26. 6.2021).
- Rezvanian M., Amin M. C. I. M., Ng S. F. Development and physicochemical characterization of alginate composite film loaded with simvastatin as a potential wound dressing. Carbohydr. Polym. 2016; 137, 295-304.
Go to original source...
Go to PubMed...
- Karimi M., Yazdi F. T., Mortazavi S. A., Shahabi-Ghahfarrokhi I., Chamani J. Development of active antimicrobial poly (l-glutamic) acid-poly (l-lysine) packaging material to protect probiotic bacterium. Polym. Test. 2020; 83, 106338.
Go to original source...
- Schneider L. A., Korber A., Grabbe S., Dissemond J. Influence of pH on wound-healing: a new perspective for wound-therapy? Arch. Dermatol. Res. 2007; 298(9), 413-420.
Go to original source...
Go to PubMed...
- Jones E. M., Cochrane C. A., Percival S. L. The effect of pH on the extracellular matrix and biofilms. Adv. in Wound Care 2015; 4(7), 431-439.
Go to original source...
Go to PubMed...
- Pospíšilová A. Léčba chronických ran moderními krycími prostředky. Prak. lékáren. 2010; 6(6), 276-281.
- Sussman G. Technology update: understanding film dressings. Wounds Int. 2010; 1(2), 1-4.
- Günther T., Theisel H., Gross M. Decoupled opacity optimization for points, lines and surfaces. Comput. Graph. Forum 2017; 36(2), 153-162.
Go to original source...
- Midtfjord H., Green P., Nussbaum P. A model of visual opacity for translucent colorants. J. Electron. Imaging 2018; 2018(8), 209-201.
Go to original source...
- Rubilar J. F., Zúñiga R. N., Osorio F., Pedreschi F. Physical properties of emulsion-based hydroxypropyl methylcellulose/whey protein isolate (HPMC/ WPI) edible films, Carbohydr. Polym. 2015; 123, 27- 38.
Go to original source...
Go to PubMed...
- Alemán A., Mastrogiacomo I., López-Caballero M. E., Ferrari B., Montero M. P., Gómez-Guillén M. C. A novel functional wrapping design by complexation of ε-polylysine with liposomes entrapping bioactive peptides. Food Bioproc. Tech. 2016; 9(7), 1113-1124.
Go to original source...
- Paunonen S. Strength and barrier enhancements of cellophane and cellulose derivative films: a review. BioResources 2013; 8(2), 3098-3121.
Go to original source...
- Wang B., Jia D. Y., Ruan S. Q., Qin S. Structure and properties of collagen-konjac glucomannan-sodium alginate blend films. J. Appl. Polym. Sci. 2007; 106(1), 327-332.
Go to original source...
- Pagano C., Ceccarini M. R., Calarco P., Scuota S., Conte C. Primavilla S., Ricci M., Perioli L. Bioadhesive polymeric films based on usnic acid for burn wound treatment: Antibacterial and cytotoxicity studies. Colloids Surf. B: Biointerfaces 2019; 178, 488-499.
Go to original source...
Go to PubMed...
- Akkaya N. E., Ergun C., Saygun A., Yesilcubuk N., Akel-Sadoglu N., Kavakli I. H., Turkmen H. S., Catalgil- Giz H. New biocompatible antibacterial wound dressing candidates; agar-locust bean gum and agar-salep films. Int. J. Biol. Macromol. 2020; 155, 430-438.
Go to original source...
Go to PubMed...
- Choi J. C., Uyama H., Lee C. H., Sung, M. H. Promotion effects of ultra-high molecular weight poly-γ-glutamic acid on wound healing. J. Microbiol. Biotechnol. 2015; 25(6), 941-945.
Go to original source...
Go to PubMed...
- Hinchliffe J. D., Parassini Madappura A., Syed Mohamed S. M. D., Roy I. Biomedical applications of bacteria- derived polymers. Polymers 2021; 13(7), 1081.
Go to original source...
Go to PubMed...