JOURNAL OF THE CZECH PHARMACEUTICAL SOCIETY AND THE SLOVAK PHARMACEUTICAL SOCIETY

Čes. slov. farm. 2021, 70(5):155-163 | DOI: 10.5817/CSF2021-5-155

Use of droplet-based microfluidic techniques in the preparation of microparticles

Martina Naiserová1, Jakub Vysloužil1,*, Kateřina Kubová1, Martina Holická1, David Vetchý1, Josef Mašek2, Eliška Mašková2
1 Masarykova Univerzita, Farmaceutická fakulta, Ústav farmaceutické technologie, Brno
2 Výzkumný ústav veterinárního lékařství, Brno, Oddělení farmakologie a toxikologie

Microparticles are widely used in myriad fields such as pharmaceuticals, foods, cosmetics, and other industrial fields. Compared with traditional methods for synthesizing microparticles, microfluidic techniques provide very powerful platforms for creating highly controllable emulsion droplets as templates for fabricating uniform microparticles with advanced structures and functions. Microfluidic techniques can generate emulsion droplets with precisely controlled size, shape, and composition. A more precise preparation process brings an effective tool to control the release profile of the drug and introduces an easily accessible reproducibility. The paper gives information about basic droplet-based set-ups and examples of attainable microparticle types preparable by this method.

Keywords: microparticles; microfluidic technique; solvent evaporation method; PDMS; microchannels

Received: July 20, 2021; Accepted: September 1, 2021; Published: May 1, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Naiserová M, Vysloužil J, Kubová K, Holická M, Vetchý D, Mašek J, Mašková E. Use of droplet-based microfluidic techniques in the preparation of microparticles. Čes. slov. farm. 2021;70(5):155-163. doi: 10.5817/CSF2021-5-155.
Download citation

References

  1. Pihl J., Karlsson M., Chiu D. T. Microfluidic technologies in drug discovery. Drug Discov. Today 2005; 10, 1377- 1383. Go to original source... Go to PubMed...
  2. Seemann R., Brinkmann M., Pfohl T., Herminghaus S. Droplet based microfluidics. Rep. Prog. Phys. 2001; 75, 016601. Go to original source... Go to PubMed...
  3. Grym J.; Foret F. Mikrofluidika: Nový způsob úpravy a vnášení vzorku pro hmotnostní spektrometrii. Chem. Listy 2005; 99, 915-921.
  4. Minteer S. D. (ed.). Microfluidic techniques: reviews and protocols. Springer Science & Business Media 2006.
  5. Šnejdrová E., Dittrich M. Poly (alpha;-hydroxyacids) as Drug Carriers. Chem. Listy 2011; 105, 27-33.
  6. Cai Y., Wei L., Ma L., Huang X., Tao A., Liu Z., Yuan W. Long-acting preparations of exenatide. Drug Des. Devel. Ther. 2013; 7, 963-970. Go to original source... Go to PubMed...
  7. Mohamed F., van Der Walle C. F. Engineering biodegradable polyester particles with specific drug targeting and drug release properties. J. Pharm. Sci. 2008; 97, 71-87. Go to original source... Go to PubMed...
  8. Gaumet M., Gurny R., Delie F. Localization and quantification of biodegradable particles in an intestinal cell model: the influence of particle size. Eur. J. Pharm. Sci. 2009; 36, 465-473. Go to original source... Go to PubMed...
  9. Gasparini G., Kosvintsev S. R., Stillwell M. T. Preparation and characterization of PLGA particles for subcutaneous controlled drug release by membrane emulsification. Colloids Surf. B 2008; 61, 199-207. Go to original source... Go to PubMed...
  10. Vasiliauskas R., Liu D., Cito S., Zhang H., Shahbazi M. A., Sikanen, T. Simple microfluidic approach to fabricate monodisperse hollow microparticles for multidrug delivery. ACS Appl. Mater. 2015; 7, 14822-14832. Go to original source... Go to PubMed...
  11. Bajerová M., Dvořáčková K., Gajdziok J., Masteiková R., Rabišková M. Metody přípravy mikročástic ve farmaceutické technologii. Čes. slov. Farm. 2009; 58, 191-199.
  12. Klusoň P., Stavárek P., Hejda S., Pěnkavová V., Bendová M., Vychodilová H. Mikroreaktory a mikrofluidní reaktory pro syntézu speciálních chemikálií. Chem. Listy 2016; 110, 892-899.
  13. Teh S. Y., Lin R., Hung L. H., Lee A. P. Droplet microfluidics. Lab. Chip. 2008; 8, 198-220. Go to original source... Go to PubMed...
  14. Fontana F., Ferreira M. P. A., Correia A., Hirvonen J., Santos H. A. Microfluidics as a cutting-edge technique for drug delivery applications. J Drug Deliv Sci Technol. 2016; 34, 76-87. Go to original source...
  15. Xu J. H., Li S. W., Tan J., Wang Y. J., Luo G. S. Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device. Langmuir 2006; 22, 7943-7946. Go to original source... Go to PubMed...
  16. Vladislavjevic G. T., Khalid N., Neves M. A., Kuroiwa T., Nakajima M., Uemura K. Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery. Adv. Drug Deliv. Rev. 2013; 65, 1626-1663. Go to original source... Go to PubMed...
  17. Ward T., Faivre M., Manouk A., Stone H. A. Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate-driven pumping. Electrophoresis 2005; 26, 3716-3724. Go to original source... Go to PubMed...
  18. Bashir S., Rees J. M., Zimmerman W. B. Simulations of microfluidic droplet formation using the two-phase level set method. Chem. Eng. Sci. 2011; 66, 4733-4741. Go to original source...
  19. Utada A. S., Fernandez-Nieves A., Stone H. A., Weitz D. A. Dripping to jetting transitions in coflowing liquid streams. Phys. Rev. Lett. 2007; 99, 094502. Go to original source... Go to PubMed...
  20. Zhao C. X. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Adv. Drug Deliv. Rev. 2013; 65(11), 1420-1446. Go to original source... Go to PubMed...
  21. Garstecki P., Fuersteman M. J., Stone H. A., Whitesides G. M. Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up. Lab. Chip. 2006; 6, 437-446. Go to original source... Go to PubMed...
  22. Zhao C. X., Middelberger A. P. J. Two-phase microfluidic flows. Chem. Eng. Sci. 2011; 66, 1394-1411. Go to original source...
  23. Hoa P. C., Yap Y. F., Nguyen N. T., Chee-Kiong Ch. J. Thermally mediated droplet formation at a microfluidic T-junction. Micro Nanosyst. 2011; 3, 65-75. Go to original source...
  24. Husny J., Cooper-White J. J. The effect of elasticity on drop creation in T-shaped microchannels. J. Nonnewton Fluid Mech. 2006; 137, 121-136. Go to original source...
  25. Gu Z., Liow J. L. Microdroplet formation in a T-junction with xanthan gum solutions. Chemeca 2011: Engineering a Better World: Sydney Hilton Hotel, NSW, Australia 18-21 September 2011; 1442.
  26. Weinmeister R., Freeman E., Eperon I. C., Stuart A. M., Hudson A. J. Single-Fluorophore Detection in Femtoliter Droplets Generated by Flow Focusing. ACS Nano. 2015; 9, 9718-9730. Go to original source... Go to PubMed...
  27. Chen X., Glawdel T., Cui N., Ren C. L. Model of droplet generation in flow focusing generators operating in the squeezing regime. MICROFLUID NANOFLUID 2015; 18, 1341-1353. Go to original source...
  28. Gañán-Calvo A. M., Montanero J. M., Martín-Banderas L., Flores-Mosquera M. Building functional ma terials for health care and pharmacy from microfluidic principles and flow focusing. Adv. Drug Deliv. Rev. 2013; 65, 1447-1469. Go to original source... Go to PubMed...
  29. Zhang M., Wang W., Xie R., Ju X., Liu Z., Jiang L., Chu L. Controllable microfluidic strategies for fabricating microparticles using emulsions as templates. Particuology 2016; 24, 18-31. Go to original source...
  30. Vysloužil J., Dvořáčková K., Kejdušová M., Rabišková M. Příprava léčivých mikročástic metodou odpařování rozpouštědla. Chem. Listy 2013; 107, 16-23.
  31. Vysloužil J., Doležel P., Kejdušová M., Košťál V., Beneš L., Dvořáčková K. Long-term controlled release of PLGA microparticles containing antidepressant mirtazapine. Pharm. Dev. Technol. 2016; 21, 214-221. Go to original source... Go to PubMed...
  32. Chu L. Y., Utada A. S., Shah R. K., Kim J. W., Weitz D. A. Controllable monodisperse multiple emulsions. Angewandte Chemie 2007; 119, 9128-9132. Go to original source...
  33. Hood R. R., Wyderko T., Devoe D. L. Programmable digital droplet microfluidics using a multibarrel capillary bundle. Sens. Actuators B Chem. 2015; 220, 992-999. Go to original source...
  34. Kim C. M., Park S. J., Kim G. M. Applications of PLGA microcarriers prepared using geometrically passive breakup on microfluidic chip. Int. J. Precis. Eng. Manuf. 2015; 16, 2545-2551. Go to original source...
  35. Sugiura S., Nakajima M., Tong J., Nabetani H., Seki M. Preparation of monodispersed solid lipid microspheres using a microchannel emulsification technique. J. Colloid Interface Sci. 2000; 227, 95-103. Go to original source... Go to PubMed...
  36. Shah R. K., Kim J. W., Agresti J. J., Weitz D. A., Chu L. Y. Fabrication of monodisperse thermosensitive microgels and gel capsules in microfluidic devices. Soft Matter. 2008; 4, 2303-2309. Go to original source...
  37. Hwang M. Y., Kim S. G., Lee H. S., Muller S. J. Generation and characterization of monodisperse deformable alginate and pNIPAM microparticles with a wide range of shear moduli. Soft Matter. 2017; 13, 5785-5794. Go to original source... Go to PubMed...
  38. Xu Q., Hashimoto M., Dang T. T., Hoare T., Kohane D. S., Whitesides G. M., Anderson D. G. Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small 2009; 5, 1575-1581. Go to original source... Go to PubMed...
  39. Guo R., Sun X. T., Zhang Y., Wang D. N., Yang C. G., Xu, Z. R. Three-dimensional poly (lactic-co-glycolic acid)/ silica colloidal crystal microparticles for sustained drug release and visualized monitoring. J. Colloid Interface Sci. 2018; 530, 465-472. Go to original source... Go to PubMed...
  40. Liu S., Deng R., Li W., Zhu J. Polymer microparticles with controllable surface textures generated through interfacial instabilities of emulsion droplets. Adv. Funct. Mater. 2012; 22, 1692-1697. Go to original source...
  41. Dendukuri D., Doyle P. S. The synthesis and assembly of polymeric microparticles using microfluidics. Adv. Mater. 2009; 21, 4071-4086. Go to original source...
  42. Dendukuri D., Tsoi K., Hatton T. A., Doyle P. S. Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir 2005; 21, 2113-2116. Go to original source... Go to PubMed...
  43. Xu S., Nie Z., Seo M., Lewis P., Kumacheva E., Stone H. A., Whitesides G. M. Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angewandte Chemie 2005; 117, 734-738. Go to original source...
  44. Nisisako T., Torii T. Formation of Biphasic Janus Droplets in a Microfabricated Channel for the Synthesis of Shape- Controlled Polymer Microparticles. Advanced materials 2007; 19, 1489-1493. Go to original source...
  45. Wang W., Zhang M. J., Xie R., Ju X. J., Yang C., Mou C. L., Chu L. Y. Hole-shell microparticles from controllably evolved double emulsions. Angew. Chem. Int. Ed. 2013; 52, 8084-8087. Go to original source... Go to PubMed...
  46. Yánez-Sedeño P., Campuzano S., Pingarrón J. M. Janus particles for (bio) sensing. Appl. Mater. Today 2017; 9, 276-288. Go to original source...
  47. Nie Z., Li W., Seo M., Xu S., Kumacheva E. Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. J. Am. Chem. Soc. 2006; 128, 9408-9412. Go to original source... Go to PubMed...
  48. Rahmani S., Park T. H., Dishman A. F., Lahann J. Multimodal delivery of irinotecan from microparticles with two distinct compartments. J. Control. Rel. 2013; 172, 239-245. Go to original source... Go to PubMed...
  49. Mou C. L., Ju X. J., Zhang L., Xie R., Wang W., Deng N. N., Chu L. Y. Monodisperse and fast-responsive poly (N-isopropyl acrylamide) microgels with opencelled porous structure. Langmuir 2014; 30, 1455- 1464. Go to original source... Go to PubMed...
  50. Gong X., Wen W., Sheng P. Microfluidic fabrication of porous polymer microspheres: dual reactions in single droplets. Langmuir 2009; 25, 7072-7077. Go to original source... Go to PubMed...
  51. Misra A. C., Lahann J. Progress of Multicompartmental Particles for Medical Applications. Adv. Healthc. Mater. 2018; 7, 1701319. Go to original source... Go to PubMed...
  52. Khan I. U., Stolch L., Serra C. A., Anton N., Akasov R., Vandamme T. F. Microfluidic conceived pH sensitive core-shell particles for dual drug delivery. Int. J. Pharm. 2015; 478, 78-87. Go to original source... Go to PubMed...
  53. Lee W. L., Guo W. M., Ho V. H., Saha A., Chong H. C., Tan N. S., Loo S. C. J. Delivery of doxorubicin and paclitaxel from double-layered microparticles: The effects of layer thickness and dual-drug vs. Single-drug loading. Acta Biomater. 2015; 27, 53-65. Go to original source... Go to PubMed...




Czech and Slovak Pharmacy

Madam, Sir,
please be aware that the website on which you intend to enter, not the general public because it contains technical information about medicines, including advertisements relating to medicinal products. This information and communication professionals are solely under §2 of the Act n.40/1995 Coll. Is active persons authorized to prescribe or supply (hereinafter expert).
Take note that if you are not an expert, you run the risk of danger to their health or the health of other persons, if you the obtained information improperly understood or interpreted, and especially advertising which may be part of this site, or whether you used it for self-diagnosis or medical treatment, whether in relation to each other in person or in relation to others.

I declare:

  1. that I have met the above instruction
  2. I'm an expert within the meaning of the Act n.40/1995 Coll. the regulation of advertising, as amended, and I am aware of the risks that would be a person other than the expert input to these sites exhibited


No

Yes

If your statement is not true, please be aware
that brings the risk of danger to their health or the health of others.