Čes. slov. farm. 2012, 61(4):150-158
Where does the development of new antituberculotics aim at?
- Univerzita Karlova v Praze, Farmaceutická fakulta v Hradci Králové, Hradec Králové, Česká republika
Several research teams in the Czech and Slovak Republics are oriented on the development of new antitubeculotics. The present article is based mainly on the information from the Chemical Abstracts from the year 2011 and the beginning of the year 2012. It is a selection from almost three thousand reports aiming to help our scientists. The article presents topical information which may be of interest to several pharmaceutical professions.
Keywords: Mycobacterium tuberculosis; antituberculotics; multiresistant mycobacteria; QSAR; evaluation in vivo; biochemistry of mycobacteria
Received: May 24, 2012; Accepted: July 11, 2012; Published: April 1, 2012 Show citation
References
- World Health Orgamization. Global tuberculosis kontrol, a short update to the 2009 report. WHO/HTM/TB/2009.426. Geneva: WHO 2009.
- Da Silva P. E. A., Polomino J. C. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis clasical and new drugs. J. Antimicob. Chemother. 2011; 66, 1417-1430.
Go to original source...
Go to PubMed...
- Yew W. W., Lange C., Leung C. C. Treatment of tuberculosis: update 2010. Eur. Res. J., 2011; 31(2), 441-462.
Go to original source...
Go to PubMed...
- Srikanth L., Raj V. V, Raghunandan N., Venkateshwerlu L. Recent advances and potential pharmacological activities of benzimidazole derivatives. Der Pharma Chemica. 2011; 3(2), 177-193.
Go to original source...
- Lee S. H., Kim S., Yun M. H., Lee Y. S., Cho S. N., Oh T., Kim P. Synthesis and antitubercular activcity of monocyclic nitroimidazole. Insight from acenazole. Bioorg, Med. Chem. Letter 2011; 21(5), 1515-1518.
Go to original source...
Go to PubMed...
- Thomson A. M., Sutherland H. S., Palmer B. D., Kmentova I., Blasser A., Franzblau S. G., Wan B., Wang Y., Ma Z., Denny W. A. Synthesis and structure-activity relationships of varied ether linker analogues of antitubercular drug (6S)-2-nitro-6-((4-(trifluoromethoxy)benzyl)oxy)-6,7-dihydroxy-5H-imidazo-[2,1-b] [1,3]oxazine(PA-824). J. Med. Chem. 2011; 54(19), 6561-6585.
Go to original source...
Go to PubMed...
- Guillemont J., Mayer C., Poncelet A., Bourdrez X., Andries K. Diarylquinolines, synthesis partway and quantitative structure-activity relationship studies leading ti the discovery of TMC 207. Future Med. Chem. 2011; 3(11), 1345-1360.
Go to original source...
Go to PubMed...
- Vicente E., Villar R., Pérez-Silanes S., Aldana I., Goldeman R., Monge A. Quinoxaline 1,4-dioxide and the potential for treating tuberculosis. Infections Disordes - Drug Targets 2011; 11, 196-294.
Go to original source...
Go to PubMed...
- Čeladník M., Košťálová Z., Jíška S., Waisser K., Kubala E., Palát K. Antituberkulotika. XVII. Funkční deriváty kyseliny 4-halogenpikolinové a jejich N-oxirů. Českoslov. Farm. 1975; 25(5), 181-185.
Go to original source...
- Swarnalatha G., Prasanthi G., Sirisha M., Chetty C. M. 1,4-Dihyropyridine: A multifunctional molecule - A review, International J. ChemTech. Research 2011; 3(1), 75-89.
- Suddigut N., Ahsan W., Alam M. S., Ali R., Jain S., Azad B., Akhtan J. Triazoles as potential bioactive agents. Int. J. Pharmaceutical Sciences Review and Research 2011; 8(1), 161-169.
- De P., Yoya G. K., Constaqnt P., Bedo-Belval F., Duran H., Saffon N., Daffé M., Balta M. Design synthesis, and biological evaluation of new cinnamic derivatives as antitubercular agents. J. Med. Chem. 2011; 54(5), 1449-1461.
Go to original source...
Go to PubMed...
- Imramovský A., Pauk K., Pejchal V., Hanousek J. Salicylanilide and their derivates as perspective anti-tuberculosis drugs: Synthetic routes and biological evaluation, Mini-Reviews in Org. Chemistry. 2011; 8(2), 211-220.
Go to original source...
- Krátký M., Vinšová J. Salicylanilides ester prodrugs as potential antimicrobial agents. - a reviews. Curr. Pharmacol. Design 2011; 17(2), 3494-3505.
Go to original source...
Go to PubMed...
- Mayer A. M. S., Rodigues A. D., Berlinck R. G.-S., Fusetano N. Marine pharmacology in 2007-2008: Marine compounds with antibacterial, anticoagulant, antifungal, anti-inflamatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities: affecting the immune and nervous system and other miscellaneous mechanism of action. Comparative Biochem. and Physiology, Part C Toxicology and Pharmacology 2011; 153(2), 191-222.
Go to original source...
Go to PubMed...
- Kharb R., Sharma P., C., Yar M. S. Pharmacological signifikance or triazole scaffold. J. Enzyme Inhibition and Medicinal. Chem. 2011; 26(1), 1-21.
Go to original source...
Go to PubMed...
- Lamichhane O. Novel target in M. tuberculosis: search for new drugs. Trends in Molecular Medicine 2011; 17(1), 25-33.
Go to original source...
Go to PubMed...
- Chen T. Ch., Lu P. L., Lin Ch. Y., Lin W. R., Chen Y. H. Fluoroquinolones are associated with delayed treatment and resistance in tuberculosis a systematic review and meta-analysis. Int. J. Infect. Diseases 2011; 15(3), e211-e216.
Go to original source...
Go to PubMed...
- Biava M., Porretta G. C., Poce G., Battilicchio C., Alfonso S., de Logu A., Manetti F., Botta M. Developing pyrrole - derivated antimycobacterial agents: a rational lead optimalization approach. Chem. Med. Chem. Minireviews. 2011; 6, 593-599.
Go to original source...
Go to PubMed...
- Study A., Goodmen A., José R. J., Loyse A., OęDonoghue M., Kon O. M., Dedicioot M. J., Harrrison T. S., John L., Lipman M., Cooke G. S. Multidrug-resistant tuberculosis (MDR-TB) treatment the UK: a study of injectable use and toxicity in practice. J. Antimicrob. Chemother. 2011; 66, 1815-1820.
Go to original source...
Go to PubMed...
- Manna K., Agrawal Y. K. Potent in vitro and in vivo antitubercular activity of certain newly synthesized indophenazine 1,3,5-trisubstituted pyrazoline derivatives baaring bezofuran, Med. Chem. Res, 2011; 20(3), 300-306.
Go to original source...
- Marrapu V., Chaturvedi V., Singh Shu, Singh Shy, Sinha S. Novel aryloxy azolyl chalcones with potent activity against Mycobacterium tuberculosis H37Rv. Eur. J. Med. Chem. 2011; 46(9), 4302-4310.
Go to original source...
Go to PubMed...
- Opletalová V. Chalkony a jejich heterocyklická analoga jako potenciální terapeutika bakteriálních onemocnění. Česk. Slov. Farm. 2000; 49(6), 278-284.
- Opletalová V., Pour M., Kuneš J., Buchta V., Silva L., Kráľová K., Chlupáčková M., Meltrová D., Peterka M., Posledníková M. Synthesis and biological evaluation of (E)-3-(nitrophenyl)-1-(pyrazin-2-yl)prop-2-en-1-ones. Collect. Czech. Chem. Commun. 2006; 71(1), 44-58.
Go to original source...
- Chlupáčová M., Opletalová V., Kuneš J., Silva L., Buchta V., Dušková J., Kráľová K. Synthesis and biological evaluation of same ring-substituted (E)-3-aryl-1-pyrazin-2-ylprop-2-en-1-ones. Folia Pharm. Univ. Carol. 2005; 33, 31-43.
Go to original source...
- Opletalová V., Hartl J., Patel A., Plát K. Jr., Buchta V. Ring substituted 3-phenyl)-1-(2-pyrazinyl)-2-propen-1-ones as potential photosynthesis-inhibiting, antitungal and antimycobacterial agents. Farmaco 2002; 57(2), 135-144.
Go to original source...
Go to PubMed...
- Ukrainete I. V., Grinevich L. A., Tkach A. A., Gorokhova O. V., Kravchenko V. N., Sim G. 4-Hydroxy-2-quinolones. 191. Synthesis, tauromerisism and biological activity of benzimidazol-2-ylamides of 1R-4-hydroxy-2-oxo-1.2-dihydroquinoline-3-cyrboxyic acids. Chemistry of Heterocyclic Compounds 2011; 46(11), 1364-1370.
Go to original source...
- Shang S., Shanley C. A., Caraway M. L., Orme E. A., Henao-Tamayo M., Hascall-Dove L., Ackart D., Lenaerts A., Basaraba R. J., Orme I. M., Orodway D. J. Activities TMC 207, Rifampin, and Pyrazinamide against Mycobacterium tuberculosis infection in guinea pigs. Antimicrob. Agents Chemotherapy 2011; 55(1), 124-131.
Go to original source...
Go to PubMed...
- Moraski G. C., Markley L. D., Hipskind P. A., Boshoff H., Cho S., Franzblau S. G., Miller M. J. Advent of imidazolo[1, 2-a] pyridine-3-carboamides with potent multi- and extended drug resistant antituberculosis activity, Med. Chem. Letters 2011; 2(6), 466-470.
Go to original source...
Go to PubMed...
- Cherian J., Choi I., Nayyar A., Manjunatha U. H., Mukherjee T., Lee Y. S., Boshoff H. I., Singh R., Ha Y. H., Goodwin M., Lakshminarayana S. B., Nioyomrattanakit P., Jiricek J., Ravindran S., Dick T., Keller T. H., Dartois V., Barry C. E. Structure-activity relationships antitubercular nitroimidazoles. 3. Extraploration of linker and lipophilic tail of ((S)-2-nitro-6,7-dinydro-5H-imidazo-[2,1-b][1,3]oxazin-6-yl)-(4-trifluormethoxybenzyl)amine (6-amino PA-824). J. Med. Chem. 2011; 54(16), 5639-5659.
Go to original source...
Go to PubMed...
- Jiri Y., Gill S. K., Kiirchhoff P. D., Wan B., Franzblau S. G., Garcia G. A. Showalter H. D. H. Synthesis and structure activity relationships of novel substituted 8-amino,8-thio, and 1,8-pyrazole congeners of antitubercular rifamycin S and rifampin. Bioorg. Med. Chem. Letters 2011; 21(20), 6094-6099.
Go to original source...
Go to PubMed...
- Halouska S., Fenton R. J., Barletta R. G., Powers R. Prediction the in vivo mechanism of action for drug leads using NMR metabolomics. Chem. Biol. 2012; 7(1), 166-171.
Go to original source...
Go to PubMed...
- Flipo M., Desreses M., Lecat-Guillet N., Dirié B., Carette X., Leroux F., Piveteau C., Demirkaya F., Lens Z., Rucktooa P., Villeret V., Christophe T., Jeon H. K., Locht C., Brodin P., Déprez B., Baulard A. R. Ethionamide boosters: Synthesis, biological aktivity, and structrure-activity relationships of a series of 1,2,4-oxadiazole EhR inmhibitors. J. Med. Chem. 2011; 54(8), 2994-3010.
Go to original source...
Go to PubMed...
- Escribano J., Rivero-Hernández C., Rivera H., Barros D., Castro-Pichel J., Pérez-Herrán E., Mendoza-Losana A., Angulo-Barturen I., Ferrer-Bazaga S., Jiménerz-Navarro E., Ballell L. 4 Subsituted thioquinolines and thiazoloquinolines: Potent, selective, and Tween-80 in vitro dependent families of antitubercular agents with moderate in vivo activity. Chem. Med. Chem. 2011; 6(12), 2252-2263.
Go to original source...
Go to PubMed...
- Singh N., Pandey S. K., Arand N., Dwivedi R., Singh S., Sinha S. K., Chaturvedi V., Jaiswal N., Srivastava A. K., Shah P., Siddiqui M. I., Tripathi R. P. Synthesis, molecular modeling and bio-evaluation of cycloalkyl fused 2-aminopyrimidines as antitubercular and antidiabetic agents Bioorg. Med. Chem. Letters 2011; 21(16), 4404-4408.
Go to original source...
Go to PubMed...
- Amaral L., Martins M., Viveiros M. Thioridazine: Alternative and potentially effective therapy of the XDR-Tb patient. Letters in Drug Design and Discovery 2011; 8, 130-132.
Go to original source...
- Bogatcheva E., Hanrahan C., Nikonenko B., de Santos G., Reddy V., Chen P., Barbosa F., Einck L., Nacy C., Protopopova M. Identification of SQ609 as a lead compound from a library od dipiperidines. Bioorg. Med. Chem. Letters 2011; 21(18), 5353-5357.
Go to original source...
Go to PubMed...
- De Groote M. A., Gilliland J. C., Wells C. I., Brooks E. J., Woolhiser L. K., Gruppo V., Poloquin Ch. A., Orme I. M., Lenaerts A. J. Comparative studies evaluating mause model used for efficacy testing of experimental drugs against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2011; 55(3), 1237-1247.
Go to original source...
Go to PubMed...
- Goodworth K. J., Hervé A. C., Stavropoulos E., Hervé G., Casades I., Hill A. M., Weingarten G. G., Tascon R. E., Colston M. J., Hailes H. C. Synthesis and in vivo biological activity of large-ringed calixarenes against Mycobacterium tuberculosis. Tetrahedron 2011; 67(2), 373-382.
Go to original source...
- Meermann B., Bockx M., Laenen A., Van Looveren Ch., Cuyckens F., Vanhaecke F. Speciation analysis of bromine-containg drug metabilites in feces samples from a human in vivo study by means of HPLC/ICP-MS comnined with on-line isotope dilution. Anal. Bioanal.. Chem. 2012; 402, 439-448.
Go to original source...
Go to PubMed...
- Petrlíková E., Waisser K., Doležal R., Holý P., Gregor J., Kuneš J., Kaustová J. Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzo xazine-2,4(3H)-dithiones substitutoted on phenyl and benzoxane moiety in position 6. Chem. Papers 2011; 65(3), 352-366.
Go to original source...
- Petrlíková E., Waisser K., Divišová H., Husáková P., Vrabcová P., Kuneš J., Kolář K., Stolaříková J. Highly active antimycobacterial derivatives of benzoxazine. Bioorg. Med.. Chem. 2010; 18(23), 8178-8187.
Go to original source...
Go to PubMed...
- Prajapati K., Singh S., Pathak A. K., Mehla P. QSAR analysis on some 8-methoxy quinoline derivatives as H37Rv (MTB) inhibitors. Int. J. Chem. Tech. Research 2011; 3(1), 408-422.
- Kovalishyn V., Andres de Sousa J., Ventura C., Leitao R. E., Martins F. QSAR modeling of antitubercular activity of diverse organic compounds. Chemometric and Inteligent Laboratory Systems 2011; 107(1), 69-74.
Go to original source...
- Sharma M. C., Sjarma S. 2D QSAR study of 7-methyljuglone derivatives. An approach to design anti-tubercular agents. J. Pharmacology and Toxicology 2011; 6(6), 499-504.
Go to original source...
- Subramaniam R., Rao G., Pai S. P. N. 2D QSAR studies of some novel quinazolinone derivatives as antitubercular agents. J. Comput. Met. Mol. Design 2011; 1(3), 69-82.
- Sawant R. L., Wadekar J. B., Lanke P. QSAR analysis of structurally similar antitubercular isatin analogues. Latin American J. Pharmacy 2011; 30(4), 773-780.
- Khuni R. C., Khedkar V. M., Chawda R. S., Chauhan N. A., Parikh A. R., Coutinho E. C. Synhthesis, antitubercular evaluation and 3D-QSAR study of N- phenyl-3.(4-fluorphenyl)-4-substituted pyrazole derivatives. Bioorg. Med. Chem. Letters 2012; 22(1), 666-678.
Go to original source...
Go to PubMed...
- Kumar U. Ch., Shaik M. 3-D QSAR CoMSTA models of arylamides for prediction of enoyl acyl carrier protein reductase inhibitory activity. J. Pharmaceutical Sciences and Technology 2011; 3(1), 536-542.
- Puratchikody A., Natarajan R., Jayapal M., Doble M. Synthesis, in vitro antitubercular actrivity and 3D-QSAR of novel quinoxaline derivatives. Chemical Biology and Drug Design 2011; 78(6), 988-998.
Go to original source...
Go to PubMed...
- Khunt R. C., Khedkar V. M., Chawda R. S., Chauhan N. A., Parikh A. R., Coutinho E. C. Synthesis, antitubercular evaluation and 3D-QSAR study of N-phenyl-3-(4-fluorophenyl)-4-substituted pyrazole derivatives. Bioorg. Med. Chem. Letters 2012; 22(1), 666-678.
Go to original source...
Go to PubMed...
- Verna R. P., Hansch C. Use of 13C NMR chemical shift as QSAR/QSPR descriptor. Chem. Reviews 2011; 111(4), 28665-2899.
Go to original source...
Go to PubMed...
- Deng L., Diao J., Chen P., Pujari V., Yao Y., Cheng G., Crick D. C., Prasad B. V. V., Song Y. Inhibition of 1-deoxy-d-xylulose-5-phosphate reductoisomerase by lipophilic phosphonates: SAR, QSAR and crystallographic studies. J. Med. Chem. 2011; 54(13), 4721-4734.
Go to original source...
Go to PubMed...
- Petrlíková E. Protituberkulózní látky a jejich další antimykobakobakteriální obdoby. Dizerační práce Univerzita Karlova v Praze, Farmaceutickáí fakulta v Hradci Králové, Hradec Králové 2010.
- Makarov V., Manina G., Mikusova K., Möllmann U., Ryabova O., Saint-Joanis B., Dhar N., Pasca M. R., Buroni S., Lucarelli A. P., Milano A., De Rossi E., Balanova M., Bobovska A., Dianiskova P., Kordulakova J., Sala C., Fullam E., Schneider P., McKinney J. D., Brodin P., Christophe T., Waddell S., Butcher P., Albrethsen J., Rosenkrants I., Brosch R., Nandi V., Bharath S., Gaonkar S., Shandil R. K., Balasubramanian V., Balganesh T., Tyagi S., Grossei J., Riccardi G., Cole S. T. Benzothiazinones kill Mycobacterium tuberculosis by blockings arabinan synthesis. Science 2009; 324 801-804.
Go to original source...
Go to PubMed...
- Barry C. S., Backus K. M., Barry C. E., Davis B. G. ESI-MS assai of M. tuberculosis cell wall antigen 85 enzymes permits substrate profillig and design of mechanism-based inhibitors. J. Am. Chem. Soc. 2011; 133(34), 13232-13235.
Go to original source...
Go to PubMed...
- Dutta N. K., Mehra S., Kaushal D. A Mycobacterium tuberculosis sigma factor network responds to cell-envelope damage by promising anti-mycobacterial thioridazine. PloS One 2010; 5(4), e10069.
Go to original source...
Go to PubMed...
- Li Y., Zhou Y., Ma Y., Li X. Design and synthesis of novel cell wall inhibitors of Mycobactrerium tuberculosis GlmM and GmU. Carbohydrate Research 2011; 346(13), 1714-1720.
Go to original source...
Go to PubMed...
- Anthony K. G., Strych U., Yeug K. R., Shoen C. S., Perez O., Krause K. L., Cynymon M. H., Arristoff P. A., Koski R. A. New classes of alanine racemase inhibitors identifies by high-throughput screening show antibacterial actuivity against Mycobacterium tuberculosis. PloS One 2011; 6(5), e20374.
Go to original source...
Go to PubMed...
- Olaley O., Raghunand T. R., Bhat S., He J., Tyagi S., Lamichhane G., Gu P., Zhou J., Zhang Y., Grosset J., Bishai W. R., Liu J. O. Methionine aminopeptidases from Mycobacterium tuberculosis as novel antimycobacterial targets. Chem Biol. 2010; 17(1), 86-97.
Go to original source...
Go to PubMed...
- Lu J. P., Yuan X. H., Ye Q. Z. Structural analysis of inhibition of Mycobacterium tuberculosis metionine aminopeptidase by bengamide derivatives. Eur. J. Med. Chem. 2012; 47(1), 479-484.
Go to original source...
Go to PubMed...
- Olaleye O., Raghunand T. R., Bhat S., Chong C., Gu P., Zhou J., Zhang Y., Bishai W. R., Liu J. O. Characterization of clioquinol and analogues as novel inhibitor of aminopeptidases from Mycobacterium tuberculosis.Tuberculosis 2011; 91, 561-565.
Go to original source...
Go to PubMed...
- Olaleye O. A.. Bishai W. R., Liu J. O. Targeting the role of N-terminal methionine processing enzyme in Mycobacterium tuberculosis. Tuberculosis 2009; 89, 555-559.
Go to original source...
Go to PubMed...
- Frecer V., Seneci P., Miertus S. Computer-assisted combinatorial design of bicyclic thymidine analogs as inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase. J. Comput. Aided.Mol. Des. 2011; 25(1), 31-49.
Go to original source...
Go to PubMed...
- Onajole O. K., Govender P., van Helden P. D., Kruger H. G., Maguire G. E. M., Wild I., Govender T. Synthesis and evaluation of S109 analogues as potential anti-tuberculosis candidates. Eur. J. Med. Chem. 2010; 45(5), 2075-2079.
Go to original source...
Go to PubMed...
- Saidenberg D. M., Passerselli A. W., Rodrigues A. V., Basso L. A., Santos D. S., Palma M. S. Shikimate kinase (EC 2.7.1.71) from Mycobacterium tuberculosis: Kinetic and structutural dynamics of potential molecular target for drug development. Current Medicinal Chemistry 2011; 18(9), 1259-1318.
Go to original source...
Go to PubMed...
- Chopra S., Matsuyoma K., Tran T., Malerich J. P., Wan B., Franzblau S. G., Lun S., Guo H., Maiga C. M., Bishai W. R., Madrid P. B. Evaluation of gyrase B as a drug target in Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2012; 67(2), 415 -421.
Go to original source...
Go to PubMed...
- Jatana N., Jangid S., Khare G., Tyagi A. K., Latha N. Molecular modeling studies of fatty acyl-CoA synthetase (FadD 13) from Mycobacterium tuberculosis - a potential target for the development of antitubercular drugs. J. Mol. Model. 2011; 17(1), 301-313.
Go to original source...
Go to PubMed...
- Chiaradia L. D., Martins P. G. A., Cordeiro M. N. S., Guido R. V. C., Ecco G., Andricopulo A. D., Yunes R. A., Vernal J., Nunes R. J., Terenzi H. Synthesis, biological evaluation, and molecular modeling of chalcone derivatives as potent inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatases (PtpA and Ptp B) J. Med. Chem. 2012; 55(1), 390-402.
Go to original source...
Go to PubMed...
- Bártů V. Tuberkulóza ve světle 21. století. Medical Tribune 2010; 4, D2 tematická příloha. ISSN 1214-8911.