Čes. slov. farm. 2019, 68(4):161-172 | DOI: 10.36290/csf.2019.019
Study of biocompatibility of peritoneal dialysis solutions measured as in vitro cells viability
- 1 Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- 2 State Institution "Kundiev Institute of Occupational Health of National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine
- 3 Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine
- 4 University of Opole, Poland
This paper presents the comparable viability study results of the HepG2 and Vero cells in the presence of traditional peritoneal dialysis (PD) solutions determined by three methods (3-[4,5-dimethylthiazol]-2-yl-2,5-diphenyl tetrazolium bromide (MTT), neutral red (NR) and sulforhodamine B assays) with establishing different correlations between viability and quality indexes of the tested PD solutions. The obtained results confirmed cytotoxicity of the PD solutions even compared with an isotonic solution of sodium chloride. PD solutions action resulted in a similar reduction in the HepG2 and Vero cells. Moreover, this research found that metabolic cellular activity is more vulnerable to the action of PD solutions measured in the MTT-test. One more point is that cytotoxicity is related to pH of a solution and other unknown mechanisms, while glucose degradation products, glucose or lactate did not exert an exceptional negative action on PD solutions cytotoxicity. It is concluded that MTT-test is the best suitable for comparative studies of PD solutions which differ in pH values.
Keywords: solutions for peritoneal dialysis; viability; HepG2; Vero cells; neutral red; MTT; sulforhodamine B
Received: June 21, 2019; Accepted: July 30, 2019; Published: April 1, 2019 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Dioos B., Paternot G., Jenvert R.-M., Duponchelle A., Marshall M. R., Nakajima M., Ganoza E. R., Sloand J. A., Wieslander A. P. Biocompatibility of a new PD solution for Japan, ReguanealTM, measures as in vitro proliferation of fibroblasts. Clinical and experimental nephrology 2018; https://doi.org/10.1007/s10157-018-1602-2
Go to original source...
Go to PubMed...
- Al-Hwiesh A. K., Shawarby M. A., Abdul-Rahman I. S., Al-Oudah N., Al-Dhofairy B., Divino-Filho J. C., Abdelrahman A., Zakaria H., El-Din M. A. N., Eldamati A., El-Salamony T., Al-Muhanna F. A. Changes in peritoneal membrane with different peritoneal dialysis solutions: Is there a difference? Hong Kong Journal of Nephrology 2016; 19, 7-18; http://dx.doi.org/10.1016/j.hkjn.2016.03.001
Go to original source...
- Wieslander A., Linden T., Kjellstrand P. Glucose degradation products in peritoneal dialysis fluids: PD Solutions how they can be avoided. Perit. Dial. Int. 2001; 23, 119-124.
Go to original source...
- Schmitt C. P., Aufrich C. Is there such a thing as biocompatible peritoneal dialysis fluid? Pediatr. Nephrol. 2017; 32, 1835-1843; https://doi.org/10.1007/s00467-016-3461-y
Go to original source...
Go to PubMed...
- Erixon M., Lindén T., Kjellstrand P., Carlsson O., Ernebrant M., Forback G. PD fluids contain high concentations of cytotoxic GDPs directly after sterilization. Peritoneal. Dial. Int. 2004; 4, 392-398.
Go to original source...
- Witowski J., Korybalska K., Wisniewska J., Breborowisz A., Gahl G. M., Frei U., Passlick-Deetjen J., Jorres A. Effect of glucose degradation products on human peritoneal mesothelial cell fuction. J. Am. Soc. Nephrol. 2000; 11, 729-739.
Go to original source...
Go to PubMed...
- Cho Y., Johnson D. W., Badve S. V., Craig J. C., Strippoli G. F. M., Wiggins K. J. The impact of neutral-pH peritoneal dialysates with reduced glucose degradation products on clinical outcomes in peritoneal dialysis patients. Kidney International 2013; 84, 969-979; https://doi.org/10.1038/ki.2013.190
Go to original source...
Go to PubMed...
- Hudz N., Korytniuk R., Vyshnevska L., Wieczorek P. P. Complex technological and biological research of solutions for peritoneal dialysis, International Journal of Applied Pharmaceutics. 2018; 10(4), 59-67; https://doi.org/10.22159/ijap.2018v10i4.24823
Go to original source...
- Erixon M., Wieslander A., Linden Т., Carlsson O., Forsbäck G., Svensson E., Jönsson J. A., Kjellstrand P. Take care in how you store your PD fluids: actual temperature determines the balance between reactive and non-reactive GDPs. Peritoneal Dial. Int. 2005; 25(6), 583-590.
Go to original source...
- Diaz-Buxo J., Sawin D.-A., Himmele R. PD solutions: new and old. Dial. Transplant. 2011; 356-361; https://doi.org/10.1002/dat.20601
Go to original source...
- Liao C-Т., Andrews R., Wallace L. E., Khan M. W. A., Kift-Morgan A., Topley N., Fraser D. J., Taylor P. R. Peritoneal macrophage heterogeneity is associated with different peritoneal dialysis outcomes. Kidney International 2017; 91, 1088-1103; http://dx.doi.org/10.1016/j.kint.2016.10.030
Go to original source...
Go to PubMed...
- Ohkuma S., Poole B. Cytoplasmic vacuolation of Mouse peritoneal macrophages and the uptake into lysosomes of weakly basic substances. The Journal of Cell Biology 1981; 90(3), 656-664.
Go to original source...
Go to PubMed...
- Angius F., Floris A. Liposomes and MTT cell viability assay: An incompatible affair. Toxicol. In Vitro 2015; 29, 314-319; https://doi.org/10.1016/j.tiv.2014.11.009
Go to original source...
Go to PubMed...
- Gilbert D. F., Friedrich O. Cell Viability Assays: Methods and Protocols. Methods in Molecular Biology, vol. 1601; https://doi.org/10.1007/978-1-4939-6960-9_2
Go to original source...
Go to PubMed...
- Ponsoda X., Jover R., Nunez C., Royo M., Castell J. V., Gomez-Lechon M. J. Evaluation of the cytotoxicity of 10 chemicals in human and rat hepatocytes and in cell lines: correlation between in vitro data and human lethal concentration. Toxicol. In Vitro 1995; 9(6), 959-966.
Go to original source...
Go to PubMed...
- Test Method Protocol for the NHK Neutral Red Uptake Cytotoxicity Assay Phase III - Validation Study: November 4, 2003.
- Keepers Y. P., Pizao P. E., Peters G. J., Ark-Otte J. V., Winograd B., Pinedo H. M. Comparison of the Sulforhodamine B Protein and Tetrazolium (MTT) Assays for in vitro Chemosensitivity Testing. Eur. J. Cancer 1991; 27(7), 897-900.
Go to original source...
Go to PubMed...
- Perez M. G., Fourcade L., Mateescu M. A., Paguin J. Neutral Red versus MTT assay of cell viability in the presence of copper compounds.Analytical Biochemistry 2017; 535, 43-46.
Go to original source...
Go to PubMed...
- Akter R., Uddin S. J, Tiralongo J., Grice I. D., Tiralongo E. A new cytotoxic steroidal glycoalkaloid from the methanol extract of Blumea lacera leaves. J. Pharm. Sci. 2015; 18(Suppl 4), 616-633.
Go to original source...
Go to PubMed...
- Ammerman N. C., Beier-Sexton M., Azad A. F. Growth and Maintenance of Vero Cell Lines. Curr. Protoc Microbiol. 2008 APPENDIX: Appendix-4E; https://doi.org/10.1002/9780471729259.mca04es11
Go to original source...
Go to PubMed...
- Bahuguna A., Khan I., Bajpai V. K., Kang S. C. MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh J. Pharmacol. 2017; 2(12), 115-118; https://doi.org/10.3329/bjp.v12i2.30892
Go to original source...
- Vichai V., Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nature Protocols 2006; 1, 1112-1116; https://doi.org/10.1038/nprot.2006.179
Go to original source...
Go to PubMed...
- Miller M. A., Bankier C., Al-Shaeri M., Hartl M. C. J. Neutral Red cytotoxicity assays for assessing in vivo carbon nanotube ecotoxicity in mussels - Comparing microscope and microplate methods. Marine Pollution Bulletin 2015; 101(2), 903-907; https://doi.org/10.1016/j.marpolbul.2015.10.072
Go to original source...
Go to PubMed...
- Vajrabhaya L., Korsuwannawong S. Cytotoxicity evaluation of a Thai herb using tetrazolium (MTT) and sulforhodamine B (SRB) assays. Journal of Analytical Science and Technology 2018; 9, 15; https://doi.org/10.1186/s40543-018-0146-0
Go to original source...
- Kobylinska L., Patereha I., Finiuk N., Mitina N., Riabtseva A., Kotsyumbas I., Stoika R., Zaichenko A., Vari S. G. Comblike PEGcontaining polymeric composition as low toxic drug nanocarrier. Cancer Nano. 2018; 9, 1-13; https://doi.org/10.1186/s12645-018-0045-5
Go to original source...
Go to PubMed...
- Boja P. Lysosomal Function and Dysfunction: Mechanism and Disease. Antioxidants & Redox signaling Volume 2012; 17(5), 766-774; https://doi.org/10.1089/ars.2011.4405
Go to original source...
Go to PubMed...
- Repetto G., Peso A. D., Zurita J. L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nature Protocols 2008; 3(7), 1125-1131; https://doi.org/doi:10.1038/nprot.2008.75
Go to original source...
Go to PubMed...
- Lim S-W., Loh H-S., Ting K-N., Bradshaw T. D., Allaudin Z. N. Reduction of MTT to Purple Formazan by Vitamin E Isomers in the Absence of Cells. Trop. Life Sci. Res. 2015; 26(1), 111-120.
- Kjellstrand P., Erixon M., Wieslander A., Lindén T., Martinson E. Temperature: the single most important factor for degradation of glucose fluids during storage. Periton. Dialysis Int. 2004; 24(4), 385-391.
Go to original source...
- Distler L., Georgieva A., Kenkel I., Huppert J., Pischetsrieder M. Structure- and concentration-specific assessment of the physiological reactivity of α-dicarbonyl glucose degradation products in peritoneal dialysis fluids. Chem. Res. Toxicol. 2014; 27, 1421-1430; https://doi.org/10.1021/tx500153n
Go to original source...
Go to PubMed...
- Hudz N., Kobylinska L., Dmytrukha N., Korytniuk R., Wieczorek P. P. Biological and analytical studies of peritoneal dialysis solutions. Ukr. Biochem. J. 2018; 90, 34-44; https://doi.org/10.15407/ubj90.02.034
Go to original source...
- British Pharmacopoeia. Edition 2009. London: The Stationery Office 2009; 10952 p.
- Bühl A., Zöfel P. SPSS Version 10. Einführung in die modern Datenanalyse unter Windows, 7, überarbeitete und erweiterte Auflage. Diasoft: 2005; 602 p. (in Russian).
- Stockert J. C., Blazquez-Castro A., Canete M., Horobin R. W., Villanueva A. MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochemika 2012; 14, 785-7976; https://doi.org/10.1016/j.acthis.2012.01.006
Go to original source...
Go to PubMed...
- Perez R. P., Godwin A. K., Handel L. M. and Hamilton T. C. A comparison of Clonogenic, Microtetrazolium and sulforhodamine B assays for determination of cisplatin cytotoxicity in human ovarian carcinoma cell lines. Eur. J. Cancer. 1993; 3(29A), 395-399.
Go to original source...
Go to PubMed...
- Liberek T., Topley N., Jörres A., Petersen M. M., Coles G.A., Gahl G. M., Williams J. D. Peritoneal dialysis fluid inhibition of polymorphonuclear leukocyte respiratory burst activation is related to the lowering of intracellular pH. Nephron. 1993; 65(2), 260-265; https://doi.org/10.1159/000187485
Go to original source...
Go to PubMed...
- Noh H., Kim J. S., Han K-H., Lee G. T., Song J. S., Chung S. H., Jeon J. S., Ha H., Lee H.. Oxidative stress during peritoneal dialysis: Implications in functional and structural changes in the membrane. Kidney International 2006; 69, 2022-2028; https://doi.org/10.1038/sj.ki.5001506
Go to original source...
Go to PubMed...