JOURNAL OF THE CZECH PHARMACEUTICAL SOCIETY AND THE SLOVAK PHARMACEUTICAL SOCIETY

Čes. slov. farm. 2019, 68(2):69-77 | DOI: 10.36290/csf.2019.009

Influence of formulation and process parameters on the properties of Cu2+/alginate particles prepared by external ionic gelation evaluated by principal component analysis

Miroslava Pavelková1, Jakub Vysloužil1,*, Kateřina Kubová1, Sylvie Pavloková1, Eliška Mašková1,2, David Vetchý1
1 Department of Pharmaceutics, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
2 Department of Pharmacology and Immunotherapy, Veterinary Research Institute

Currently, the method of external ionic gelation for the preparation of alginate particles is successfully used not only in the field of pharmacy and medicine, but also especially in the field of biotechnology. Therefore, the preparation of alginate particles and their subsequent evaluation using principal component analysis was the key task of our experiment. To optimize this method, we focused on the evaluation of the effect of formulation (the polymer concentration, the hardening solution concentration) and process parameters (the outer diameter of the injection needle) on the properties of the resulting beads (yield, sphericity factor, equivalent diameter and swelling capacity at pH 6). Using multivariate data analysis, the major influence on the resulting properties of the prepared particles was confirmed only in sodium alginate concentration. Obtained results verified the reliable and safe potential of the external ionic gelation for preparation alginate-based particulate dosage forms.

Keywords: hydrogel particles; external ionic gelation; sodium alginate; copper ions; evaluation of the particulate dosage form; Principal component analysis
Grants and funding:

This work was supported by the Ministry of Education, Youth and Sports project "FIT" (Pharmacology, Immunotherapy, nanoToxicology) CZ.02.1.01/0.0/0.0/15 003/0000495 and by the Ministry of Agriculture of the Czech Republic, institutional support MZE-R00518.

Received: March 18, 2019; Accepted: March 29, 2019; Published: February 1, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Pavelková M, Vysloužil J, Kubová K, Pavloková S, Mašková E, Vetchý D. Influence of formulation and process parameters on the properties of Cu2+/alginate particles prepared by external ionic gelation evaluated by principal component analysis. Čes. slov. farm. 2019;68(2):69-77. doi: 10.36290/csf.2019.009.
Download citation

References

  1. Agnihotri S. A., Mallikarjuna N. N., Aminabhavi T. M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release 2004; 100, 5-28. Go to original source... Go to PubMed...
  2. Patil J. S., Kamalapur M. V., Marapur S. C., Kadam D. V. Ionotropic gelation and polyelectrolyte complexation: The novel techniques to design hydrogel particulate sustained, modulated drug delivery system: A review. Dig. J. Nanomater. Bios. 2010; 5, 241-248.
  3. Patil P., Chavanke D., Wagh M. A. A review on ionotropic gelation method: Novel approach for controlled gastroretentive gelispheres. Int. J. Pharm. Pharm. Sci. 2012; 4, 27-32.
  4. Cerciello A., Auriemma G., Del Gaudio P., Sansone F., Aquino R. P., Russo P. A novel core-shell chronotherapeutic system for the oral administration of ketoprofen. J. Drug Deliv. Sci. Tec. 2016; 32, 126-131. Go to original source...
  5. Ahmadi F., Oveisi Z., Samani S. M., Amoozgar Z. Chitosan based hydrogels: characteristics and pharmaceutical applications. Res. Pharm. Sci. 2015; 10, 1-16.
  6. Zhang H., Tumarkin E., Peerani R., Nie Z., Sullan R. M. A., Walker G. C., Kumacheva E. Microfluidic production of biopolymer microcapsules with controlled morphology. J. Am. Chem. Soc. 2006; 128, 12205-12210. Go to original source... Go to PubMed...
  7. Smidsrød O., Skjåk-Braek G. Alginate as immobilization matrix for cells. Trends Biotechnol. 1990; 8, 71-78. Go to original source... Go to PubMed...
  8. Alonso B. C., Rayment P., Ciampi E., Ablett S., Marciani L., Spiller R. C., Norton I. T., Gowland P. A. NMR relaxometry and rheology of ionic and acid alginate gels. Carbohyd. Polym. 2010; 82, 663-669. Go to original source...
  9. Skjåk-Braek G., Grasdalen H., Smidsrød O. Inhomogeneous polysaccharide ionic gels. Carbohyd. Polym. 1989; 10, 31-54. Go to original source...
  10. Vysloužil J., Dvořáčková K., Kejdušová M. Příprava léčivých mikročástic metodou odpařování rozpouštědla. Chem. Listy 2013; 107, 16-23.
  11. Lee B.-B., Ravindra P., Chan E.-S. Size and shape of calcium alginate beads produced by extrusion dripping. Chem. Eng. Technol. 2013; 36, 1627-1642. Go to original source...
  12. Gombotz W. R., Wee S. F. Protein release from alginate matrices. Adv. Drug Deliver. Rev. 1998; 31, 267-285. Go to original source... Go to PubMed...
  13. Marković D., Zarubica A., Stojković N., Vasić M., Cakić M., Nikolić G. Alginates and similar exopolysaccharides in biomedical application and pharmacy: Controled delivery of drugs. Advanced technologies 2016; 5, 39-52. Go to original source...
  14. Lee K. Y., Mooney D. J. Alginate: properties and biomedical applications. Prog. Polym. Sci. 2012; 37, 106-126. Go to original source... Go to PubMed...
  15. Urtuvia V., Maturana N., Acevedo F., Peña C., Díaz-Barrera A. Bacterial alginate production: an overview of its biosynthesis and potential industrial production. World J. Microb. Biot. 2017; 33, 198. Go to original source... Go to PubMed...
  16. Haug A., Larsen B., Smidsrød O. Studies on the sequence of uronic acid residues in alginic acid. Acta Chem. Scand. 1967; 21, 691-704. Go to original source...
  17. Haug A., Larsen B. Quantitative determination of the uronic acid composition of alginates. Acta Chem. Scand. 1962; 16, 1908-1918. Go to original source...
  18. Agulhon P., Markova V., Robitzer M., Quignard F., Mineva T. Structure of alginate gels: Interaction of diuronate units with divalent cations from density functional calculations. Biomacromolecules 2012; 13, 1899-1907. Go to original source... Go to PubMed...
  19. Mørch Y. A., Donati I., Strand B. L., Skjåk-Braek G. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 2006; 7, 1471-1480. Go to original source... Go to PubMed...
  20. Haug A., Smidsrød O. Selectively of some anionic polymers for divalent metal ions. Acta Chem. Scand. 1970; 24, 843-854. Go to original source...
  21. Idota Y., Kogure Y., Kato T., Yano K., Arakawa H., Miyajima C., Kasahara F., Ogihara T. Relationship between physical parameters of various metal ions and binding affinity for alginate. Biol. Pharm. Bull. 2016; 39, 1893-1896. Go to original source... Go to PubMed...
  22. Braccini I., Pérez. Molecular basis of Ca2+-induced gelation in alginates and pectins: The egg-box model revisited. Biomacromolecules. 2001; 2, 1089-1096. Go to original source... Go to PubMed...
  23. Lu L., Liu X., Qian L., Tong Z. Sol-gel transition in aqueous alginate solutions induced by cupric cations observed with viscoelasticity. Polym. J. 2003; 35, 804-809. Go to original source...
  24. Velings N. M., Mestdagh M. M. Physico-chemical properties of alginate gel beads. Polym. Gels Netw. 1995; 3, 311-330. Go to original source...
  25. Rodrigues J. R., Lagoa R. Copper ions binding in Cu-alginate gelation. J. Carbohyd. Chem. 2006; 25, 219-232. Go to original source...
  26. Jain D., Bar-Shalom D. Alginate drug delivery systems: application in context of pharmaceutical and biomedical research. Drug Dev. Ind. Pharm. 2014; 40, online 1-9. Go to original source... Go to PubMed...
  27. Thomas S. Alginate dressings in surgery and wound management - part 1. J. Wound Care. 2000; 9, 56-60. Go to original source... Go to PubMed...
  28. Draget K. I., Taylor C. Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocolloid 2011; 25, 251-256. Go to original source...
  29. Augst, A. D., Kong H. J., Mooney D. J. Alginate hydrogels as biomaterials. Macromol. Biosci. 2006; 6, 623-633. Go to original source... Go to PubMed...
  30. Pavelková M., Kubová K., Vysloužil J., Kejdušová M., Vetchý D., Celer V., Molinková D., Lobová D., Pechová A., Vysloužil J., Kulich P. Biological effects of drug-free alginate beads cross-linked by copper ions prepared using external ionotropic gelation. AAPS PharmSciTech. 2017; 18, 1343-1354. Go to original source... Go to PubMed...
  31. Grass G., Rensing C., Solioz M. Metallic copper as an antimicrobial surface. Appl. Environ. Microb. 2011; 77, 1541-1547. Go to original source... Go to PubMed...
  32. Rabišková M., Häring A., Minczingerová K., Havlásek M., Musilová P. Microcrystalline cellulose in oral dosage forms. Chem. Listy 2007; 101, 70-77.
  33. Smýkalová I., Horáček J., Hýbl M., Bjelková M., Pavelek M., Krulikovská T., Hampel D. Seed type identification by image analysis - correlation of nutrients with size, shape and colour characteristics of seeds. Chem. Listy 2011; 105, 138-145.
  34. Dodou D., Breedveld P., Wieringa P. A. Mucoadhesives in the gastrointestinal tract: revisiting the literature for novel applications. Eur. J. Pharm. Biopharm. 2005; 60, 1-16. Go to original source... Go to PubMed...
  35. Kubánková R., Vysloužil J., Kejdušová M., Vetchý D., Dvořáčková K. Impact of formulation and process parameters on the properties of chitosan-based microspheres prepared by external ionic gelation. Ces. slov, Farm. 2014; 63, 127-135. Go to original source...
  36. The R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 1993-2003. https://www.R-project.org/
  37. Chan E.-S., Lee B.-B., Ravindra P., Poncelet D. Prediction models for shape and size of ca-alginate macrobeads produced through extrusion - dripping method. J. Colloid Interf. Sci. 2009; 338, 63-72. Go to original source... Go to PubMed...
  38. Rousseau I., Le Cerf D., Picton L., Argillier J. F., Muller G. Entrapment and release of sodium polystyrene sulfonate (SPS) from calcium alginate gel beads. Eur. Polym. J. 2004; 40, 2709-2715. Go to original source...
  39. Kašpar O., Jakubec M., Štěpánek F. Characterization of spray dried chitosan-TPP microparticles formed by two- and tree fluid nozzles. Powder Technol. 2013; 204, 31-40. Go to original source...
  40. Popa E. G., Gomes M. E., Reis R. L. Cell delivery systems using alginate- carrageenan hydrogel beads and fibers for regenerative medicine applications. Biomacromolecules 2011; 12, 3952-3961. Go to original source... Go to PubMed...
  41. Aswathy K. S., Abraham A. M., Jomy L., Mehaladevi R., Rosemol K. J. Formulation and evaluation of Etodolac alginate beads prepared by ionotropic gelation for sustained release. Int. J. Sci. Innov. Res. 2014; 3, 527-531. Go to original source...
  42. Manjanna K. M., Shivakumar B., Pramod kumar T. M. Diclofenac sodium microbeads for oral sustained drug delivery. Int. J. Pharm. Tech. Res. 2009; 1, 317-327.
  43. Joshi S., Patel P., Lin S., Madan P. L. Development of cross-linked alginate spheres by ionotropic gelation technique for controlled release of naproxen orally. Asian J. Biomed. Pharm. Sci. 2012; 7, 134-142.
  44. Rajesh K. S., Khanrah A., Biswanath S. Release of ketoprofen from alginate microparticles containing film forming polymers. J. Sci. Ind. Res. 2003; 62, 985-989.
  45. Chan E.-S. Preparation of Ca-alginate beads containing high oil content: Influence of process variables on encapsulation efficiency and bead properties. Carbohyd. Polym. 2011; 84, 1267-1275. Go to original source...
  46. Østberg T., Vesterhus L., Graffner C. Calcium alginate matrices for oral multiple unit administration: II. Effect of process and formulation factors on matrix properties. Int. J. of Pharmaceut. 1993; 97, 183-193. Go to original source...
  47. Sathali A. A. H., Varun J. Formulation, development and in vitro evaluation of candesartan cilexetil mucoadhesive microbeads. Int. J. Curr. Pharm. Res. 2012; 4, 109-118.
  48. Khazaeli P., Pardakhty A., Hassanzadeh F. Formulation of ibuprofen beads by ionotropic gelation. Iran. J. Pharm. Res. 2008; 7, 163-170.
  49. Blandino A., Macías M., Cantero D. Formation of calcium alginate gel capsules: Influence of sodium alginate and CaCl2 concentration on gelation kinetics. J. Biosci. Bioeng. 1999; 88, 686-689. Go to original source... Go to PubMed...
  50. Bajpai S. K., Sharma S. Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. React. Funct. Polym. 2004; 59, 129-140. Go to original source...
  51. Striamornsak P., Nunthanid J. Calcium pectinate gel beads for controlled release drug delivery: II. Effect of formulation and processing variales on drug release. J Microencapsul. 1999; 16, 303-313. Go to original source... Go to PubMed...
  52. Reimann C., Filzmoser P., Garret R. G., Dutter R. Statistical data analysis explained: applied environmental statistics with R. Ltd. Chichester, John Wiley & Sons; 2008. Go to original source...




Czech and Slovak Pharmacy

Madam, Sir,
please be aware that the website on which you intend to enter, not the general public because it contains technical information about medicines, including advertisements relating to medicinal products. This information and communication professionals are solely under §2 of the Act n.40/1995 Coll. Is active persons authorized to prescribe or supply (hereinafter expert).
Take note that if you are not an expert, you run the risk of danger to their health or the health of other persons, if you the obtained information improperly understood or interpreted, and especially advertising which may be part of this site, or whether you used it for self-diagnosis or medical treatment, whether in relation to each other in person or in relation to others.

I declare:

  1. that I have met the above instruction
  2. I'm an expert within the meaning of the Act n.40/1995 Coll. the regulation of advertising, as amended, and I am aware of the risks that would be a person other than the expert input to these sites exhibited


No

Yes

If your statement is not true, please be aware
that brings the risk of danger to their health or the health of others.