Čes. slov. farm. 2019, 68(1):12-26 | DOI: 10.36290/csf.2019.002
Microneedles as a perspective for transdermal therapeutic systems
- Katedra farmaceutickej technológie, Univerzita veterinárskeho lekárstva a farmácie v Košiciach, SR
Transdermal Therapeutic Systems (TTS) improve patient compliance especially due to its simple application and long-term action with the need to exchange the system every 12 hours to several days. The advantages also include elimination of first-pass effect, avoidance of gastrointestinal adverse effects, stable drug levels in the blood and simple discontinuation of therapy by patch removing. However, most drugs do not have the appropriate physicochemical properties to achieve therapeutic levels by transdermal application, therefore only a limited amount of drugs administered by this route is available on the market. Microneedles (MI) by their painless application appear to increase drug permeation when applied transdermally. In this review work, various types of MI (solid, coated, hollow, matrix, hydrogel forming) their size, shape, grouping, but also materials and technologies used in MI production are described. Finally, the work is focused on current clinical trials in which MI have been tested. MI with their unique properties have potential to increase the range of transdermally administered drugs currently applied by another route of administration. MI can simply pave the way for transdermal delivery to poorly penetrating small molecules as well as large molecules such as vaccines, monoclonal antibodies, or siRNA.
Keywords: clinical trials; microneedles; materials; shape; transdermal drug delivery; vaccine delivery
Received: February 25, 2019; Accepted: March 21, 2019; Published: January 1, 2019 Show citation
References
- Kirschner N., Houdek P., Fromm M., Moll I., Brandner J. M. Tight junctions form a barrier in human epidermis. Eur. J. Cell Biol. 2010; 89(11), 839-842. https://doi.org/10.1016/j.ejcb.2010.07.010
Go to original source...
Go to PubMed...
- Andrews S. N., Jeong E., Prausnitz M. R. Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum. Pharm. Res. 2013; 30(4), 1099-1109. https://doi.org/10.1007/s11095-012-0946-7
Go to original source...
Go to PubMed...
- Gaur P. K., Mishra S., Purohit S., Dave K. Transdermal Drug Delivery System: A Review RANSDERMAL DRUG DELIVERY SYSTEM: A REVIEW. Asian J. Pharm. Clin. Res. 2009; 2(1), 14-20.
- Nisar A., Afzulpurkar N., Mahaisavariya B., Tuantranont A. MEMS-based micropumps in drug delivery and biomedical applications. Sensors Actuators, B Chem. 2008; 130(2), 917-942. https://doi.org/10.1016/j.snb.2007.10.064
Go to original source...
- Ashraf M. W., Tayyaba S., Afzulpurkar N. Micro Electromechanical Systems (MEMS) based microfluidic devices for biomedical applications. Int. J. Mol. Sci. 2011; 12(6), 3648-3704. https://doi.org/10.3390/ijms12063648
Go to original source...
Go to PubMed...
- Ita K. Transdermal delivery of drugs with microneedles - potential and challenges. Pharmaceutics. 2015; 7(3), 90-105. https://doi.org/10.1016/j.jddst.2015.05.001
Go to original source...
- Gill H. S., Denson D. D., Burris B. A., Prausnitz M. R. Effect of microneedle design on pain in human volunteers. Clin. J. Pain. 2008; 24(7), 585-594. https://doi.org/10.1097/AJP.0b013e31816778f9
Go to original source...
Go to PubMed...
- Khanna P., Luongo K., Strom J. A., Bhansali S. Sharpening of hollow silicon microneedles to reduce skin penetration force. J. Micromechanics Microengineering. 2010; 20(4), 45011. https://doi.org/10.1088/0960-1317/20/4/045011
Go to original source...
- Gittard S. D., Chen B., Xu H., Ovsianikov A., Chichkov B. N., Monteiro-Riviere N. A., et al. The effects of geometry on skin penetration and failure of polymer microneedles. J. Adhes. Sci. Technol. 2013; 27(3), 227-243. https://doi.org/10.1080/01694243.2012.705101
Go to original source...
Go to PubMed...
- Davis S. P., Prausnitz M. R., Allen M. G. Fabrication and characterization of laser micromachined hollow microneedles. TRANSDUCERS 2003 - 12th International Conference on Solid-State Sensors, Actuators and Microsystems, Digest of Technical Papers, vol. 2. IEEE 2003; 1435-1438.
Go to original source...
- Arora A., Prausnitz M. R., Mitragotri S. Micro-scale devices for transdermal drug delivery. Int. J. Pharm. 2008; 364(2), 227-236. https://doi.org/10.1016/j.ijpharm.2008.08.032
Go to original source...
Go to PubMed...
- Han M., Hyun D. H., Park H. H., Lee S. S., Kim C. H., Kim C. A novel fabrication process for out-of-plane microneedle sheets of biocompatible polymer. J. Micromechanics Microengineering 2007; 17(6), 1184-1191. https://doi.org/10.1088/0960-1317/17/6/012
Go to original source...
- Chen M. C., Ling M. H., Lai K. Y., Pramudityo E. Chitosan microneedle patches for sustained transdermal delivery of macromolecules. Biomacromolecules 2012; 13(12), 4022-4031. https://doi.org/10.1021/bm301293d
Go to original source...
Go to PubMed...
- Wilke N., Mulcahy A., Ye S. R., Morrissey A. Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectronics J. 2005; 36(7), 650-656. https://doi.org/10.1016/j.mejo.2005.04.044
Go to original source...
- Jenkins D., Corrie S., Flaim C., Kendall M. High density and high aspect ratio solid micro-nanoprojection arrays for targeted skin vaccine delivery and specific antibody extraction. RSC Adv. 2012; 2(8), 3490-3495. https://doi.org/10.1039/c2ra20153d
Go to original source...
- Martanto W., Davis S. P., Holiday N. R., Wang J., Gill H. S., Prausnitz M. R. Transdermal delivery of insulin using microneedles in vivo. Pharm. Res. 2004; 21(6), 947-952. https://doi.org/10.1023/B:PHAM.0000029282.44140.2e
Go to original source...
Go to PubMed...
- Bystrova S., Luttge R. Micromolding for ceramic microneedle arrays. Microelectron. Eng. 2011; 88(8), 1681-1684. https://doi.org/10.1016/j.mee.2010.12.067
Go to original source...
- Ma G., Wu C. Microneedle, bio-microneedle and bio-inspired microneedle: A review. J. Control. Release 2017; 251, 11-23.
Go to original source...
Go to PubMed...
- Miyano T., Tobinaga Y., Kanno T., Matsuzaki Y., Takeda H., Wakui M., et al. Sugar Micro Needles as Transdermic Drug Delivery System. Biomed. Microdevices 2005; 7(3), 185-188. https://doi.org/10.1007/s10544-005-3024-7
Go to original source...
Go to PubMed...
- Paik S. J., Byun S., Lim J. M., Park Y., Lee A., Chung S., et al. In-plane single-crystal-silicon microneedles for minimally invasive microfluid systems. Sensors Actuators, A Phys. 2004; 114(2-3), 276-284. https://doi.org/10.1016/j.sna.2003.12.029
Go to original source...
- Sebastien H., Mcallister D. V., ALLEN M. G., Prausnitz M. R. Microfabricated Microneedles: A Novel Approach to Transdermal Drug Delivery. vol. 87. Elsevier 1998; 1-3.
Go to original source...
Go to PubMed...
- S H., P L., G H., M R., R G., W T. Genetic transformation of nematodes using arrays of micromechanical piercing structures. Biotechniques 1995; 19, 766-770.
- Larrañeta E., Lutton R. E. M., Woolfson A. D., Donnelly R. F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. R Reports 2016; 104, 1-32.
Go to original source...
- Oh J. H., Park H. H., Do K. Y., Han M., Hyun D. H., Kim C. G., et al. Influence of the delivery systems using a microneedle array on the permeation of a hydrophilic molecule, calcein. Eur. J. Pharm. Biopharm. 2008; 69(3), 1040-1045. https://doi.org/10.1016/j.ejpb.2008.02.009
Go to original source...
Go to PubMed...
- Ng H. I., Fernando G. J. P., Kendall M. A. F. Induction of potent CD8+ T cell responses through the delivery of subunit protein vaccines to skin antigen-presenting cells using densely packed microprojection arrays. J. Control. Release 2012; 162(3), 477-484. https://doi.org/10.1016/j.jconrel.2012.07.024
Go to original source...
Go to PubMed...
- Cormier M., Johnson B., Ameri M., Nyam K., Libiran L., Zhang D. D., et al. Transdermal delivery of desmopressin using a coated microneedle array patch system. J. Control. Release 2004; 97(3), 503-511. https://doi.org/10.1016/j.jconrel.2004.04.003
Go to original source...
Go to PubMed...
- Kim Y. C., Quan F. S., Compans R. W., Kang S. M., Prausnitz M. R. Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. J. Control. Release 2010; 142(2), 187-195. https://doi.org/10.1016/j.jconrel.2009.10.013
Go to original source...
Go to PubMed...
- Han M., Kim D. K., Kang S. H., Yoon H. R., Kim B. Y., Lee S. S., et al. Improvement in antigen-delivery using fabrication of a grooves-embedded microneedle array. Sensors Actuators, B Chem. 2009; 137(1), 274-280. https://doi.org/10.1016/j.snb.2008.11.017
Go to original source...
- Gardeniers H. J. G. E., Luttge R., Berenschot E. J. W., de Boer M. J., Yeshurun S. Y., Hefetz M., et al. Silicon micromachined hollow microneedles for transdermal liquid transport. J. Microelectromechanical Syst. 2003; 12(6), 855-862. https://doi.org/10.1109/JMEMS.2003.820293
Go to original source...
- Davis S. P., Martanto W., Allen M. G., Prausnitz M. R. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans. Biomed. Eng. 2005; 52(5), 909-915. https://doi.org/10.1109/TBME.2005.845240
Go to original source...
Go to PubMed...
- Wang P. M., Cornwell M., Hill J., Prausnitz M. R. Precise microinjection into skin using hollow microneedles. J. Invest. Dermatol. 2006; 126(5), 1080-1087. https://doi.org/10.1038/sj.jid.5700150
Go to original source...
Go to PubMed...
- Bodhale D. W., Nisar A., Afzulpurkar N. Structural and microfluidic analysis of hollow side-open polymeric microneedles for transdermal drug delivery applications. Microfluid. Nanofluidics. 2010; 8(3), 373-392. https://doi.org/10.1007/s10404-009-0467-9
Go to original source...
- Ovsianikov A., Chichkov B., Mente P., Monteiro-Riviere N. A., Doraiswamy A., Narayan R. J. Two photon polymerization of polymer-ceramic hybrid materials for transdermal drug delivery. Int. J. Appl. Ceram. Technol. 2007; 4(1), 22-29. https://doi.org/10.1111/j.1744-7402.2007.02115.x
Go to original source...
- Garland M. J., Migalska K., Mahmood T. M. T., Singh T. R. R., Woolfson A. D., Donnelly R. F. Microneedle arrays as medical devices for enhanced transdermal drug delivery. Expert Rev. Med. Devices 2011; 8(4), 459-482. https://doi.org/10.1586/erd.11.20
Go to original source...
Go to PubMed...
- Hong X., Wei L., Wu F., Wu Z., Chen L., Liu Z., et al. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Des. Devel. Ther. 2013; 7, 945-952.
Go to original source...
Go to PubMed...
- Demir Y. K., Metin A. Ü., Şatiroğlu B., Solmaz M. E., Kayser V., Mäder K. Poly (methyl vinyl ether-co-maleic acid) - Pectin based hydrogel-forming systems: Gel, film, and microneedles. Eur. J. Pharm. Biopharm. 2017; 117, 182-194.
Go to original source...
Go to PubMed...
- Donnelly R. F., Singh T. R. R., Garland M. J., Migalska K., Majithiya R., McCrudden C. M., et al. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv. Funct. Mater. 2012; 22(23), 4879-4890. https://doi.org/10.1002/adfm.201200864
Go to original source...
Go to PubMed...
- Yang S., Feng Y., Zhang L., Chen N., Yuan W., Jin T. A scalable fabrication process of polymer microneedles. Int. J. Nanomedicine 2012; 7, 1415-1422.
Go to original source...
Go to PubMed...
- Gratieri T., Alberti I., Lapteva M., Kalia Y. N. Next generation intra- and transdermal therapeutic systems: Using non- and minimally-invasive technologies to increase drug delivery into and across the skin. Eur. J. Pharm. Sci. 2013; 50(5), 609-622. https://doi.org/10.1016/j.ejps.2013.03.019
Go to original source...
Go to PubMed...
- Hong X., Wu Z., Chen L., Wu F., Wei L., Yuan W. Hydrogel Microneedle Arrays for Transdermal Drug Delivery. Nano-Micro Lett. 2014; 6, 191-199.
Go to original source...
- Kim Y. C., Park J. H., Prausnitz M. R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 2012; 64(14), 1547-1568. https://doi.org/10.1016/j.addr.2012.04.005
Go to original source...
Go to PubMed...
- Cai B., Xia W., Bredenberg S., Engqvist H. Self-setting bioceramic microscopic protrusions for transdermal drug delivery. J. Mater. Chem. B. 2014; 2(36), 5992-5998. https://doi.org/10.1039/c4tb00764f
Go to original source...
Go to PubMed...
- Verbaan F. J., Bal S. M., van den Berg D. J., Groenink W. H. H., Verpoorten H., Lüttge R., et al. Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J. Control. Release 2007; 117(2), 238-245. https://doi.org/10.1016/j.jconrel.2006.11.009
Go to original source...
Go to PubMed...
- Chandrasekaran S., Brazzle J. D., Frazier A. B. Surface micromachined metallic microneedles. J. Microelectromechanical Syst. 2003; 12(3), 281-288. https://doi.org/10.1109/JMEMS.2003.809951
Go to original source...
- Martin C. J., Allender C. J., Brain K. R., Morrissey A., Birchall J. C. Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. J. Control. Release 2012; 158(1), 93-101. https://doi.org/10.1016/J.JCONREL.2011.10.024
Go to original source...
Go to PubMed...
- Donnelly R. F., Morrow D. I. J., Singh T. R. R., Migalska K., McCarron P. A., O'Mahony C., et al. Processing difficulties and instability of carbohydrate microneedle arrays. Drug Dev. Ind. Pharm. 2009; 35(10), 1242-1254. https://doi.org/10.1080/03639040902882280
Go to original source...
Go to PubMed...
- Loizidou E. Z., Williams N. A., Barrow D. A., Eaton M. J., McCrory J., Evans S. L., et al. Structural characterisation and transdermal delivery studies on sugar microneedles: Experimental and finite element modelling analyses. Eur. J. Pharm. Biopharm. 2015; 89, 224-231.
Go to original source...
Go to PubMed...
- Lee K., Lee C. Y., Jung H. Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials 2011; 32(11), 3134-3140. https://doi.org/10.1016/J.BIOMATERIALS.2011.01.014
Go to original source...
Go to PubMed...
- Demuth P. C., Min Y., Irvine D. J., Hammond P. T. Implantable silk composite microneedles for programmable vaccine release kinetics and enhanced immunogenicity in transcutaneous immunization. Adv. Healthc. Mater. 2014; 3(1), 47-58. https://doi.org/10.1002/adhm.201300139
Go to original source...
Go to PubMed...
- Jin J., Reese V., Coler R., Carter D., Rolandi M. Chitin Microneedles for an Easy-to-Use Tuberculosis Skin Test. Adv. Healthc. Mater. 2014; 3(3), 349-353. https://doi.org/10.1002/adhm.201300185
Go to original source...
Go to PubMed...
- Park J. H., Allen M. G., Prausnitz M. R. Polymer microneedles for controlled-release drug delivery. Pharm. Res. 2006; 23(5), 1008-1019. https://doi.org/10.1007/s11095-006-0028-9
Go to original source...
Go to PubMed...
- Zhang J., Wang Y., Jin J. Y., Degan S., Hall R. P., Boehm R. D., et al. Use of Drawing Lithography-Fabricated Polyglycolic Acid Microneedles for Transdermal Delivery of Itraconazole to a Human Basal Cell Carcinoma Model Regenerated on Mice. JOM. 2016; 68(4), 1128-1133. https://doi.org/10.1007/s11837-016-1841-1
Go to original source...
Go to PubMed...
- Cha K. J., Kim T., Park S. J., Kim D. S. Simple and cost-effective fabrication of solid biodegradable polymer microneedle arrays with adjustable aspect ratio for transdermal drug delivery using acupuncture microneedles. J. Micromechanics Microengineering. 2014; 24(11), 115015. https://doi.org/10.1088/0960-1317/24/11/115015
Go to original source...
- Wang M., Hu L., Xu C. Recent advances in the design of polymeric microneedles for transdermal drug delivery and biosensing. Lab Chip. 2017; 17(8), 1373-1387. https://doi.org/10.1039/C7LC00016B
Go to original source...
Go to PubMed...
- Kim J. Y., Han M. R., Kim Y. H., Shin S. W., Nam S. Y., Park J. H. Tip-loaded dissolving microneedles for transdermal delivery of donepezil hydrochloride for treatment of Alzheimer's disease. Eur. J. Pharm. Biopharm. 2016; 105, 148-55.
Go to original source...
Go to PubMed...
- Vandeweerd C., Myers J., Coulter M., Yalcin A., Corvin J. Positives and negatives of online dating according to women 50+. J. Women Aging. 2016; 28(3), 259-270. https://doi.org/10.1007/s11095-010-0097-7
Go to original source...
Go to PubMed...
- Demir Y. K., Akan Z., Kerimoglu O. Characterization of polymeric microneedle arrays for transdermal drug delivery. PLoS One 2013; 8(10), e77289. https://doi.org/10.1371/journal.pone.0077289
Go to original source...
Go to PubMed...
- Lee J. W., Park J. H., Prausnitz M. R. Dissolving microneedles for transdermal drug delivery. Biomaterials 2008; 29(13), 2113-2124. https://doi.org/10.14219/jada.archive.2012.0208
Go to original source...
Go to PubMed...
- Mönkäre J., Reza Nejadnik M., Baccouche K., Romeijn S., Jiskoot W., Bouwstra J. A. IgG-loaded hyaluronan-based dissolving microneedles for intradermal protein delivery. J. Control. Release 2015; 218, 53-62.
Go to original source...
Go to PubMed...
- Lee I. C., Lin W. M., Shu J. C., Tsai S. W., Chen C. H., Tsai M. T. Formulation of two-layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice. J. Biomed. Mater. Res. - Part A. 2017; 105(1), 84-93. https://doi.org/10.1002/jbm.a.35869
Go to original source...
Go to PubMed...
- Chen M. C., Ling M. H., Kusuma S. J. Poly-γ-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin. Acta Biomater. 2015; 24, 106-116.
Go to original source...
Go to PubMed...
- Sullivan S. P., Murthy N., Prausnitz M. R. Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv. Mater. 2008; 20(5), 933-938. https://doi.org/10.1002/adma.200701205
Go to original source...
Go to PubMed...
- Lee I. C., He J. S., Tsai M. T., Lin K. C. Fabrication of a novel partially dissolving polymer microneedle patch for transdermal drug delivery. J. Mater. Chem. B. 2015; 3(2), 276-285. https://doi.org/10.1039/c4tb01555j
Go to original source...
Go to PubMed...
- Quinn H. L., Bonham L., Hughes C. M., Donnelly R. F. Design of a dissolving microneedle platform for transdermal delivery of a fixed-dose combination of cardiovascular drugs. J. Pharm. Sci. 2015; 104(10), 3490-3500. https://doi.org/10.1002/jps.24563
Go to original source...
Go to PubMed...
- McCrudden M. T. C., Alkilani A. Z., McCrudden C. M., McAlister E., McCarthy H. O., Woolfson A. D., et al. Design and physicochemical characterisation of novel dissolving polymeric microneedle arrays for transdermal delivery of high dose, low molecular weight drugs. J. Control. Release 2014; 180(1), 71-80. https://doi.org/10.1016/j.jconrel.2014.02.007
Go to original source...
Go to PubMed...
- Ochoa M., Mousoulis C., Ziaie B. Polymeric microdevices for transdermal and subcutaneous drug delivery. Adv. Drug Deliv. Rev. 2012; 64(14), 1603-1616.
Go to original source...
Go to PubMed...
- Rodríguez A., Molinero D., Valera E., Trifonov T., Marsal L. F., Pallarès J., et al. Fabrication of silicon oxide microneedles from macroporous silicon. Sensors Actuators, B Chem. 2005; 109(1), 135-140. https://doi.org/10.1016/j.snb.2005.03.015
Go to original source...
- McGrath M. G., Vucen S., Vrdoljak A., Kelly A., O'Mahony C., Crean A. M., et al. Production of dissolvable microneedles using an atomised spray process: Effect of microneedle composition on skin penetration. Eur. J. Pharm. Biopharm. 2014; 86(2), 200-211. https://doi.org/10.1016/j.ejpb.2013.04.023
Go to original source...
Go to PubMed...
- Lee K., Jung H. Drawing lithography for microneedles: A review of fundamentals and biomedical applications. Biomaterials. 2012; 33(30), 7309-7326. https://doi.org/10.1016/J.BIOMATERIALS.2012.06.065
Go to original source...
Go to PubMed...
- Sharad J. Combination of microneedling and glycolic acid peels for the treatment of acne scars in dark skin. J. Cosmet. Dermatol. 2011; 10(4), 317-23. https://doi.org/10.1111/j.1473-2165.2011.00583.x
Go to original source...
Go to PubMed...
- Garg S., Baveja S. Combination therapy in the management of atrophic acne scars. J. Cutan. Aesthet. Surg. 2014; 7(1), 18. https://doi.org/10.4103/0974-2077.129964
Go to original source...
Go to PubMed...
- Nofal E., Helmy A., Nofal A., Alakad R., Nasr M. Platelet-rich plasma versus CROSS technique with 100% trichloroacetic acid versus combined skin needling and platelet rich plasma in the treatment of atrophic acne scars: A comparative study. Dermatologic Surg. 2014; 40(8), 864-873. https://doi.org/10.1111/dsu.0000000000000091
- Dhurat R., Sukesh M., Avhad G., Dandale A., Pal A., Pund P. A randomized evaluator blinded study of effect of microneedling in androgenetic alopecia: A pilot study. Int. J. Trichology. 2013; 5(1), 6. https://doi.org/10.4103/0974-7753.114700
Go to original source...
Go to PubMed...
- Lee Y. B., Eun Y. S., Lee J. H., Cheon M. S., Park Y. G., Cho B. K., et al. Effects of topical application of growth factors followed by microneedle therapy in women with female pattern hair loss: A pilot study. J. Dermatol. 2013; 40, 81-83.
Go to original source...
Go to PubMed...
- Nanopass. A Study to Assess the Safety and Efficacy of a Microneedle Device for Local Anesthesia - Full Text View - ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT00539084?term=microneedle&rank=5. Accessed January 23, 2019.
- Petukhova T. A., Hassoun L. A., Foolad N., Barath M., Sivamani R. K. Effect of expedited microneedle-assisted photodynamic therapy for field treatment of actinic keratoses: A randomized clinical trial. JAMA Dermatology 2017; 153(7), 637-643. https://doi.org/10.1001/jamadermatol.2017.0849
Go to original source...
Go to PubMed...
- Lev-Tov H., Larsen L., Zackria R., Chahal H., Eisen D. B., Sivamani R. K. Microneedle-assisted incubation during aminolaevulinic acid photodynamic therapy of actinic keratoses: a randomized controlled evaluator-blind trial. Br. J. Dermatol. 2017; 176(2), 543-545. https://doi.org/10.1111/bjd.15116
Go to original source...
Go to PubMed...
- Miteva M., Lima M., Tosti A. Effect of microneedle pretreatment on topical anesthesia: A randomized clinical trial association of dermatology consultation with accuracy of cutaneous disorder diagnoses in hospitalized patients: A multicenter analysis limited information exists on th. JAMA Dermatology. 2016; 152(4), 476-477. https://doi.org/10.1001/jamadermatol.2015.5545
Go to original source...
Go to PubMed...
- Bhatnagar S., Dave K., Venuganti V. V. K. Microneedles in the clinic. J. Control. Release. 2017; 260, 164-182.
Go to original source...
Go to PubMed...
- Leroux-Roels I., Vets E., Freese R., Seiberling M., Weber F., Salamand C., et al. Seasonal influenza vaccine delivered by intradermal microinjection: A randomised controlled safety and immunogenicity trial in adults. Vaccine 2008; 26(51), 6614-6619. https://doi.org/10.1016/j.vaccine.2008.09.078
Go to original source...
Go to PubMed...
- Arnou R., Icardi G., De Decker M., Ambrozaitis A., Kazek M. P., Weber F., et al. Intradermal influenza vaccine for older adults: A randomized controlled multicenter phase III study. Vaccine. 2009; 27(52), 7304-7312. https://doi.org/10.1016/j.vaccine.2009.10.033
Go to original source...
Go to PubMed...
- Morelon E., Noble C. P., Daoud S., Cahen R., Goujon-Henry C., Weber F., et al. Immunogenicity and safety of intradermal influenza vaccination in renal transplant patients who were non-responders to conventional influenza vaccination. Vaccine 2010; 28(42), 6885-6890. https://doi.org/10.1016/j.vaccine.2010.08.015
Go to original source...
Go to PubMed...
- European Medicines Agency. Intanza Withdrawal of the marketing authorisation in the European Union. Available at: https://www.ema.europa.eu/documents/public-statement/public-statement-intanza-withdrawal-marketing-authorisation-european-union_en.pdf. Accessed January 30, 2019.
- European Medicines Agency. IDflu Withdrawal of the marketing authorisation in the European Union. Available at: https://www.ema.europa.eu/documents/public-statement/public-statement-idflu-withdrawal-marketing-authorisation-european-union_en.pdf. Accessed January 30, 2019.
- Troy S. B., Kouiavskaia D., Siik J., Kochba E., Beydoun H., Mirochnitchenko O., et al. Comparison of the immunogenicity of various booster doses of inactivated polio vaccine delivered intradermally versus intramuscularly to HIV-infected adults. J. Infect. Dis. 2015; 211(12), 1969-1976. https://doi.org/10.1093/infdis/jiu841
Go to original source...
Go to PubMed...
- Seventieth World Health Assembly. Poliomyelitis. Report by the Secretariat. WHO 2017; 1-18.
- Norman J. J., Brown M. R., Raviele N. A., Prausnitz M. R., Felner E. I. Faster pharmacokinetics and increased patient acceptance of intradermal insulin delivery using a single hollow microneedle in children and adolescents with type 1 diabetes. Pediatr. Diabetes. 2013; 14(6), 459-465. https://doi.org/10.1111/pedi.12031
Go to original source...
Go to PubMed...
- Gupta J., Felner E. I., Prausnitz M. R. Rapid pharmacokinetics of intradermal insulin administered using microneedles in type 1 diabetes subjects. Diabetes Technol. Ther. 2011; 13(4), 451-456. https://doi.org/10.1089/dia.2010.0204
Go to original source...
Go to PubMed...
- Glucagon Z. P., Represents P. Zosano Pharma Announces Positive Phase 2 Results for Its ZP Glucagon Patch Program for Treatment of Severe Hypoglycemia 2016.
- Yates J., Miller P. D., Bolognese M. A., Woodson G., Valter I., Clarkin M., et al. A transdermal patch delivering the PTHrP1-34 analog, abaloparatide (BA058), dose-dependently increases spine and hip BMD compared to placebo. Endocr. Rev. 2014; 35.
Go to original source...
- Kellerman D. J., Ameri M., Tepper S. J. Rapid systemic delivery of zolmitriptan using an adhesive dermally applied microarray. Pain Manag. 2017; 7(6), 559-567. https://doi.org/10.2217/pmt-2017-0036
Go to original source...
Go to PubMed...
- Spierings E. L. H., Brandes J. L., Kudrow D. B., Weintraub J., Schmidt P. C., Kellerman D. J., et al. Randomized, double-blind, placebo-controlled, parallel-group, multi-center study of the safety and efficacy of ADAM zolmitriptan for the acute treatment of migraine. Cephalalgia 2018; 38(2), 215-224. https://doi.org/10.1177/0333102417737765
Go to original source...
Go to PubMed...
- Leung D. Y. M., Jepson B., Beck L. A., Hanifin J. M., Schneider L. C., Paller A. S., et al. A clinical trial of intradermal and intramuscular seasonal influenza vaccination in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2017; 139(5), 1575-1582.e8. https://doi.org/10.1016/j.jaci.2016.12.952
Go to original source...
Go to PubMed...
- Saroha K., Yadav B., Sharma B. Transdermal patch: A discrete dosage form. Int. J. Curr. Pharm. Res. 2011; 3(3), 98-108.
- Donnelly R. F., Larrañeta E. Microarray patches: potentially useful delivery systems for long-acting nanosuspensions. Drug Discov. Today 2018; 23(5), 1026-1033. https://doi.org/10.1016/J.DRUDIS.2017.10.013
Go to original source...
Go to PubMed...
- Gerstel M., VA Place - US Patent 3 964,482., 1976 undefined. Drug delivery device. Google Patents. n.d