Čes. slov. farm. 2018, 67(5):175-181 | DOI: 10.36290/csf.2018.025
Co-processed excipients for direct compression of tablets
- 1 Department of Pharmaceutics, Faculty of Pharmacy, Veterinary and Pharmaceutical University Brno, Czech Republic
- 2 McePharma, Bilovec, Czech Republic
- 3 Masaryk Memorial Cancer Institute, Brno, Czech Republic
Tablets are the most frequently employed dosage form. Their advantage lies in their availability, easy administration, good stability, and low price. The easiest technology to produce tablets is direct compression, even though the use of the method requires overcoming many obstacles, mainly related to content uniformity and variation of mass, disintegration, dissolution, and radial hardness of tablets. "Co-processed excipients", containing commonly processed blends of fillers, binders, disintegrants, lubricants, and other excipients are more and more widely used nowadays. These mixtures are manufactured by various technologies, chiefly by spray-drying, fluid bed granulation, wet granulation, melt granulation, dry granulation, and co-crystallisation. This review article lists excipients used usually to constitute co-processed excipients, technologies, and commercially available co-processed excipients for direct compression.
Keywords: co-processed excipients; direct compression; blends; tablets; physical characteristics
Received: September 19, 2018; Accepted: October 8, 2018; Published: May 1, 2018 Show citation
References
- Vraníková B., Gajdziok J., Vetchý D., Kratochvíl B., Seilerová L. Liquid-solid systems as a modern trend for increasing drug bioavailability. Chem. Listy 2013; 107, 681-687.
- Adámek M., Řehula M. Chemical structure and viscoelasticity of fillers for direct compression of drug tablets. Chem. Listy 2011; 105, 691-696.
- Ahjel S. W., Lupuliasa D. Directly compressible adjuvants - a pharmaceutical approach. Farmacia 2008. 56, 79-87.
- Kanojia N., Kaur L., Nagpal B. M. Modified excipients in novel drug delivery: Need of the day. JPTRM 2013; 1, 81-107.
Go to original source...
- Cretu E., Hirjau V., Hirjau M., Balaci T., Stanescu A., Mitu M. Manufacturing process and characterization of some beta-carotene tablets. Farmacia 2008; 56, 55-62.
- Nachaegari, S. K. Bansal A. K. Co-processed excipients for solid dosage forms. Pharm. Technol. 2004; 28, 52-64.
- Rabišková M., Vetchý D. Orodispersible tablets. Prakt. Lékáren. 2007; 3, 181-183.
- Pawar A. Y., Patil S. H., Jadha K. R., Baviskar R. S. Formulation and evaluation of matrix tablet of venlafaxine HCL by using directly compressible co-processed excipient. IJPPS 2014; 6, 504-511.
- Jivraj M., Martini L. G., Thomson C. M. An overview of the different excipients useful for the direct compression of tablets. Pharm. Sci. Technol. 2000; 3, 58-63.
Go to original source...
Go to PubMed...
- Iyer R. M., Hegde, S., Singhal D., Malick W. A novel approach to determine solid fraction using a laser-based direct volume measurement device. Pharm. Dev. Technol. 2014; 19, 577-582.
Go to original source...
Go to PubMed...
- Saha S., Shahiwala A. F. Multifunctional coprocessed excipients for improved tabletting performance. Expert. Opin. Drug Deliv. 2009; 6, 197-208.
Go to original source...
Go to PubMed...
- Bioground. CompactCel®. http://www.biogrund.com/products/tabletting/free-flowing-binding-agent (20. 4. 2015).
- Tanaka N., Nagai Y., Kawaguchi H., Fukami T., Hosokawa T. Composition for rapid disintegrating tablet in oral cavity, U.S. Pat. Appl. 20050106240 A1. 19. 5. 2005.
- Li X. H., Zhao L. J., Ruan K. P., Feng Y., Xu S., Ruan K. F. The application of factor analysis to evaluate deforming behaviors of directly compressed powders. Powder Technol. 2013; 247, 47-54.
Go to original source...
- Siepmann J., Karrout Y., Gehrke M., Penz, F. K., Siepmann F. Predicting drug release from HPMC/lactose tablets. Int. J. Pharm. 2013; 441, 826-834.
Go to original source...
Go to PubMed...
- Coucke D., Vervaet C., Foreman P., Adriaensens P., Carleer R., Remon J. P. Effect on the nasal bioavailability of co-processing drug and bioadhesive carrier via spray-drying, Int. J. Pharm. 2009; 379, 67-71.
Go to original source...
Go to PubMed...
- Okáčová L., Vetchý D., Franc A., Rabišková M., Kratochvíl B. Increasing bioavailability of poorly water-soluble drugs by their modification. Chem. Listy 2010; 104, 21-26.
- Goto K., Sunada H., Danjo K., Yonezawa Y. Pharmaceutical evaluation of multipurpose excipients for direct compressed tablet manufacture: comparisons of the capabi-lities of multipurpose excipients with those in general use. Drug Dev. Ind. Pharm. 1999; 25, 869-878.
Go to original source...
Go to PubMed...
- Franc A., Rabišková M. Manufacture of granulates containing high potency drugs. Čes. slov. Farm. 2010; 59, 51-58.
- Schmidt P. C., Rubensdörfer C. J. V. Evaluation of Ludipress as a "multipurpose excipient" for direct compression: Part II: Interactive blending and tableting with micronized glibenclamide. Drug Dev. Ind. Pharm. 1994; 20, 2927-2952.
Go to original source...
- Iovanov R. I., Tomuta I., Leucuta S. E. The optimization of prolonged release of amtrix tablets with felodipine. Farmacia 2008; 56, 34-43.
- Meggle Products. http://www.meggle-pharma.com/en/productConfigurator.html (20. 4. 2015).
- Jinapong N., Suphantharika M., Jamnong P. Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. J. Food Eng. 2008; 84, 194-205.
Go to original source...
- Melkebeke V. B. Vermeulen B., Vervaet C., Remon J. P. Melt granulation using a twin-screw extruder: a case study. Int. J. Pharm. 2006; 326, 89-93.
Go to original source...
Go to PubMed...
- Mendes R. W., Gupta R. W., Katz I. A. Nu-Tab as a chewable direct compression carrier. Drug Cosmet. Ind. 1974; 115, 42-46.
- Okáčová L., Vetchý D., Franc A., Rabišková M. Increasing bioavailability of poorly water-soluble drugs by technological methods facilitating drug dissolution. Chem. Listy 2011; 105, 34-40.
- Kratochvíl B. Cocrystals and their expected pharmaceutical applications. Chem. Listy 2010; 104, 823-830.
- El-Shattawy H. H. Nalidixic acid - Direct compression excipients, preformulation stability screening using differential scanning calorimetry. Drug Dev. Ind. Pharm. 1982; 10, 491-504.
Go to original source...
- Minoshima H., Matsushima K., Liang H., Shinohara K. Basic model of spray drying granulation. J. Chem. Eng. Jpn. 2001; 34, 472-478.
Go to original source...
- Nidhi G., Dureja H., Deepak K. Co-processed excipients: a patent review. Recent Pat. Drug Deliv. Formul. 2013; 7, 73-83.
Go to original source...
Go to PubMed...
- Hirani J. J., Rathod, D. A., Vadalia, K. R. Orally disintegrating tablets: a review. TJPR 2009; 8, 161-172.
Go to original source...
- Chowdary K. P. R., Ramya K. Preparation, characterization and evaluation of a new co-processed excipient as directly compressible vehicle in tablet formulation. JGPTS 2013; 4, 1322-1328.
- Steele D. F., Tobyn M., Edge S., Chen A., Staniforth J. N. Physicochemical and mechanical evaluation of a novel high density grade of silicified microcrystalline cellulose. Drug Dev. Ind. Pharm. 2004; 30, 103-109.
Go to original source...
Go to PubMed...
- Carlin B., Schoneker D. Co-processed excipients workshop. IPEC-Americas 2013. http://ipecamericas.org/system/files/coprocessed-excipient-workshop.pdf (20. 4. 2015).
- Jogan P. D., Gohel M. C. A review of co-processed directly compressible excipients. J. Pharm. Sci. 2005; 8, 76-93.
- Mistry M. Application-related properties of a new fast dispersible excipient. Pharm. Technol. Eur. 2009; 21, 24-27.
- Rojas J., Buckner I., Kumar V. Co-proccessed excipients with enhanced direct compression functionality for improved tableting performance. Drug Dev. Ind. Pharm. 2012; 38, 1157-1170.
Go to original source...
Go to PubMed...