Čes. slov. farm. 2018, 67(2):71-80 | DOI: 10.36290/csf.2018.010
Microbiome in connection with metabolic syndrome and the therapeutic potential of its influencing
- Farmakologický ústav Lékařská fakulta Masarykovy Univerzity, Brno
Several fields of medicine have been concerned with the role of the microbiome in maintaining the balance in the human body and its changes in the pathogenesis of diseases in recent years. The intestinal microbiome seems to play a key role in the regulation of metabolic pathways, inflammation and intestinal permeability. The aim of this review is to assess the importance of the intestinal microbiome in metabolic syndrome and the therapeutic or preventive potential of its manipulation.
Keywords: metabolic syndrome; microbiome; probiotics; prebiotics; fecal transplant
Grants and funding:
Publikácia vznikla na Masarykovej Univerzite v rámci projektu "Behaviorální psychofarmakologie a farmakokinetika v preklinickém výzkumu léčiv" číslo MUNI/A/1132/2017 podporeného z prostriedkov účelovej podpory na špecifický vysokoškolský výskum, ktorú poskytlo MŠMT v roku 2018.
Received: May 7, 2018; Accepted: May 17, 2018; Published: February 1, 2018 Show citation
References
- Monda V, et al. Exercise Modifies the Gut Microbiota with Positive Health Effects. Oxid. Med. Cell. Longev. 2017; 2017, 3831972.
Go to original source...
Go to PubMed...
- Cani P. D, et al. Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes 2007; 56, 1761-1772.
Go to original source...
Go to PubMed...
- Gibson G. R., Roberfroid M. B. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 1995; 125, 1401-1412.
Go to original source...
Go to PubMed...
- Backhed F, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. 2004; 101, 15718-15723.
Go to original source...
Go to PubMed...
- Eckburg P. B, et al. Diversity of the Human Intestinal Microbial Flora. Science 2005; 308, 1635-1638.
Go to original source...
Go to PubMed...
- Zoetendal E. G., Vaughan E. E., De Vos W. M. A microbial world within us. Mol. Microbiol. 2006; 59, 1639-1650.
Go to original source...
Go to PubMed...
- Sun J., Chang E. B. Exploring gut microbes in human health and disease: Pushing the envelope. Genes Dis. 2014; 1, 132-139.
Go to original source...
Go to PubMed...
- Petschow B, et al. Probiotics, prebiotics, and the host microbiome: the science of translation. Ann. N. Y. Acad. Sci. 2013; 1306, 1-17.
Go to original source...
Go to PubMed...
- Ley R. E., Backhed F., Turnbaugh P., Lozupone C. A., Knight R. D., Gordon J. I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. 2005; 102, 11070-11075.
Go to original source...
Go to PubMed...
- Ley R. E., Turnbaugh P. J., Klein S., Gordon J. I. Microbial ecology: Human gut microbes associated with obesity. Nature 2006; 444, 1022-1023.
Go to original source...
Go to PubMed...
- Collado M. C., Isolauri E., Laitinen K., Salminen S. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am. J. Clin. Nutr. 2008; 88, 894-899.
Go to original source...
Go to PubMed...
- Jumpertz R, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr. 2011; 94, 58-65.
Go to original source...
Go to PubMed...
- Remely M., Hippe B., Zanner J., Aumueller E., Brath H., Haslberger A. G. Gut microbiota of obese, type 2 diabetic individuals is enriched in Faecalibacterium prausnitzii, Akkermansia muciniphila and Peptostreptococcus anaerobius after weight loss. Endocr. Metab. Immune Disord. Drug Targets 2016; 16, 99-106.
Go to original source...
Go to PubMed...
- Carabotti M., Scirocco A., Maselli M. A., Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015; 28, 203-209.
- Brown A. J, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 2003; 278, 11312-11319.
Go to original source...
Go to PubMed...
- Xiong Y, et al. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc. Natl. Acad. Sci. USA 2004; 101, 1045-1050.
Go to original source...
Go to PubMed...
- Maslowski K. M, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009; 461, 1282-1286.
Go to original source...
Go to PubMed...
- de Vadder F, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014; 156, 84-96.
Go to original source...
Go to PubMed...
- Archer B. J., Johnson S. K., Devereux H. M., Baxter A. L. Effect of fat replacement by inulin or lupin-kernel fibre on sausage patty acceptability, post-meal perceptions of satiety and food intake in men. Br. J. Nutr. 2004; 91, 591.
Go to original source...
Go to PubMed...
- Cani P. D., Dewever C., Delzenne N. M. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br. J. Nutr. 2004; 92, 521-526.
Go to original source...
Go to PubMed...
- Cani P. D, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009; 58, 1091-1103.
Go to original source...
Go to PubMed...
- Roberfroid M, et al. Prebiotic effects: metabolic and health benefits. Br. J. Nutr. 2010; 104, 1-63.
Go to original source...
Go to PubMed...
- Cani P. D., Hoste S., Guiot Y., Delzenne N. M. Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats. Br. J. Nutr. 2007; 98, 32-37.
Go to original source...
Go to PubMed...
- Fruhwürth S., Vogel H., Schürmann A., Williams K. J. Novel Insights into How Overnutrition Disrupts the Hypothalamic Actions of Leptin. Front. Endocrinol. (Lausanne). 2018; 9, 89.
Go to original source...
Go to PubMed...
- Everard A, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 2011; 60, 2775-2786.
Go to original source...
Go to PubMed...
- Petersen A. M. W., Pedersen B. K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 2005; 98, 1154-1162.
Go to original source...
Go to PubMed...
- Bäckhed F., Manchester J. K., Semenkovich C. F., Gordon J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl. Acad. Sci. 2007; 104, 979-984.
Go to original source...
Go to PubMed...
- Aronsson L, et al. Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4). PLoS One 2010; 5, 13087.
Go to original source...
Go to PubMed...
- Rhee S. H., Pothoulakis C., Mayer E. A. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat. Rev. Gastroenterol. Hepatol. 2009; 6, 306-314.
Go to original source...
Go to PubMed...
- Kabouridis P. S, et al. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron 2015; 85, 289-295.
Go to original source...
Go to PubMed...
- Tennoune N, et al. Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide α-MSH, at the origin of eating disorders. Transl. Psychiatry 2014; 4, 458.
Go to original source...
Go to PubMed...
- Gusarov I, et al. Bacterial nitric-oxide synthases operate without a dedicated redox partner. J. Biol. Chem. 2008; 283, 13140-13147.
Go to original source...
Go to PubMed...
- Ji X. B.,Hollocher T. C. Reduction of nitrite to nitric oxide by enteric bacteria. Biochem. Biophys. Res. Commun. 1988; 157, 106-108.
Go to original source...
Go to PubMed...
- Williams B. B, et al. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 2014; 16, 495-503.
Go to original source...
Go to PubMed...
- Roberts C. K., Hevener A. L., Barnard R. J. Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Comprehensive Physiology 2013; 3, 1-58.
Go to original source...
Go to PubMed...
- Horská K., Kučerová J., Suchý P., Kotolová H. Metabolic syndrome - dysregulation of adipose tissue endocrine function. Ces. slov. Farm. 2014; 63, 152-159.
Go to original source...
- Bloch-Damti A, et al. Differential effects of IRS1 phosphorylated on Ser307 or Ser632 in the induction of insulin resistance by oxidative stress. Diabetologia 2006; 49, 2463-2473.
Go to original source...
Go to PubMed...
- Nishimura S, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 2009; 15, 914-920.
Go to original source...
Go to PubMed...
- Boutagy N. E., McMillan R. P., Frisard M. I., Hulver M. W. Metabolic endotoxemia with obesity: Is it real and is it relevant? Biochimie 2016; 124, 11-20.
Go to original source...
Go to PubMed...
- Luche E, et al. Metabolic endotoxemia directly increases the proliferation of adipocyte precursors at the onset of metabolic diseases through a CD14-dependent mechanism. Mol. Metab. 2013; 2, 281-291.
Go to original source...
Go to PubMed...
- Thomas C. J, et al. Evidence of a trimolecular complex involving LPS, LPS binding protein and soluble CD14 as an effector of LPS response. FEBS Lett 2002; 531, 184-188.
Go to original source...
Go to PubMed...
- Ghoshal S., Witta J., Zhong J., De Villiers W., Eckhardt E. Chylomicrons promote intestinal absorption of lipopoly-saccharides. J. Lipid Res. 2009; 50, 90-97.
Go to original source...
Go to PubMed...
- Maziere C., Conte M. A., Dantin F., Maziere J. C. Lipopolysaccharide enhances oxidative modification of low density lipoprotein by copper ions, endothelial and smooth muscle cells. Atherosclerosis 1999; 143, 75-80.
Go to original source...
Go to PubMed...
- Kitchens R. L., Thompson P. A., Viriyakosol S., O'Keefe G. E., Munford R. S. Plasma CD14 decreases monocyte responses to LPS by transferring cell-bound LPS to plasma lipoproteins. J. Clin. Invest. 2001; 108, 485-493.
Go to original source...
- Vora P, et al. Beta-defensin-2 expression is regulated by TLR signaling in intestinal epithelial cells. J. Immunol. 2004; 173, 5398-5405.
Go to original source...
Go to PubMed...
- Mantis N. J., Rol N., Corthésy B. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 2011; 4, 603-611.
Go to original source...
Go to PubMed...
- Eberl G., Colonna M., Di Santo J. P., McKenzie A. N. J. Innate lymphoid cells: A new paradigm in immunology. Science 2015; 348, 6566.
Go to original source...
Go to PubMed...
- Wang X, et al. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature 2014; 514, 237-241.
Go to original source...
Go to PubMed...
- Dethlefsen L., Huse S., Sogin M. L., D. A. Relman D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008; 6, 280.
Go to original source...
Go to PubMed...
- Angelakis E., Armougom F., Million M., Raoult D. The relationship between gut microbiota and weight gain in humans. Future Microbiol. 2012; 7, 91-109.
Go to original source...
Go to PubMed...
- Yun S. I., Park H. O., Kang J. H. Effect of Lactobacillus gasseri BNR17 on blood glucose levels and body weight in a mouse model of type 2 diabetes. J. Appl. Microbiol. 2009; 107, 1681-1686.
Go to original source...
Go to PubMed...
- Kang J. H., Yun S. I., Park M. H., Park J. H., Jeong S. Y., Park H. O. Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoS One 2013; 8, 54617.
Go to original source...
Go to PubMed...
- Kang J. H., Yun S. I., Park H. O. Effects of Lactobacillus gasseri BNR17 on body weight and adipose tissue mass in diet-induced overweight rats. J. Microbiol. 2010; 48, 712-714.
Go to original source...
Go to PubMed...
- Miyoshi M., Ogawa A., Higurashi S., Kadooka Y. Anti-obesity effect of Lactobacillus gasseri SBT2055 accompanied by inhibition of pro-inflammatory gene expression in the visceral adipose tissue in diet-induced obese mice. Eur. J. Nutr. 2014; 53, 599-606.
Go to original source...
Go to PubMed...
- Ji Y. S, et al. Modulation of the murine microbiome with a concomitant anti-obesity effect by Lactobacillus rhamnosus GG and Lactobacillus sakei NR28. Benef. Microbes 2012; 3, 13-22.
Go to original source...
Go to PubMed...
- Yoo S. R, et al. Probiotics L. plantarum and L. curvatus in combination alter hepatic lipid metabolism and suppress diet-induced obesity. Obesity (Silver Spring). 2013; 21, 2571-2578.
Go to original source...
Go to PubMed...
- An H. M, et al. Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats. Lipids Health Dis. 2011; 10, 116.
Go to original source...
Go to PubMed...
- Cano P. G., Santacruz A., Trejo F. M., Sanz Y. Bifidobacterium CECT 7765 improves metabolic and immunological alterations associated with obesity in high-fat diet-fed mice. Obesity (Silver Spring) 2013; 21, 2310-2321.
Go to original source...
Go to PubMed...
- Esposito E, et al. Probiotics reduce the inflammatory response induced by a high-fat diet in the liver of young rats. J. Nutr. 2009; 139, 905-911.
Go to original source...
Go to PubMed...
- Aronsson L, et al. Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4). PLoS One 2010; 5, 13087.
Go to original source...
Go to PubMed...
- Kim S. W., Park K. Y., Kim B., Kim E., Hyun C. K. Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production. Biochem. Biophys. Res. Commun. 2013; 431, 258-263.
Go to original source...
Go to PubMed...
- Park D. Y, et al. Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One 2013; 8, 59470.
Go to original source...
Go to PubMed...
- Kadooka Y, et al. Effect of Lactobacillus gasseri SBT2055 in fermented milk on abdominal adiposity in adults in a randomised controlled trial. Br. J. Nutr. 2013; 110, 1696-1703.
Go to original source...
Go to PubMed...
- Kadooka Y, et al. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur. J. Clin. Nutr. 2010; 64, 636-643.
Go to original source...
Go to PubMed...
- Gøbel R. J., Larsen N., Jakobsen M., Mølgaard C., Michaelsen K. F. Probiotics to adolescents with obesity: effects on inflammation and metabolic syndrome. J. Pediatr. Gastroenterol. Nutr. 2012; 55, 673-678.
Go to original source...
Go to PubMed...
- Leber B, et al. The influence of probiotic supplementation on gut permeability in patients with metabolic syndrome: an open label, randomized pilot study. Eur. J. Clin. Nutr. 2012; 6610, 1110-1115.
Go to original source...
Go to PubMed...
- Tripolt N. J, et al. Short communication: Effect of supplementation with Lactobacillus casei Shirota on insulin sensitivity, β-cell function, and markers of endothelial function and inflammation in subjects with metabolic syndrome - a pilot study. J. Dairy Sci. 2013;96, 89-95.
Go to original source...
Go to PubMed...
- Jung S. P, et al. Effect of Lactobacillus gasseri BNR17 on Overweight and Obese Adults: A Randomized, Double-Blind Clinical Trial. Korean J. Fam. Med. 2013; 34, 80-89.
Go to original source...
Go to PubMed...
- Woodard G. A, et al. Probiotics improve outcomes after Roux-en-Y gastric bypass surgery: a prospective randomized trial. J. Gastrointest. Surg. 2009; 13, 1198-1204.
Go to original source...
Go to PubMed...
- Bukowska H., Pieczul-Mróz J., Jastrzebska M., Chełstowski K., Naruszewicz M. Decrease in fibrinogen and LDL-cholesterol levels upon supplementation of diet with Lactobacillus plantarum in subjects with moderately elevated cholesterol. Atherosclerosis 1998; 137, 437-438.
- Agerholm-Larsen L., Raben A., Haulrik N., Hansen A. S., Manders M., Astrup A. Effect of 8 week intake of probiotic milk products on risk factors for cardiovascular diseases. Eur. J. Clin. Nutr. 2000; 54, 288-297.
Go to original source...
Go to PubMed...
- Naruszewicz M., Johansson M. L., Zapolska-Downar D., Bukowska H. Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers. Am. J. Clin. Nutr. 2002; 76, 1249-1255.
Go to original source...
Go to PubMed...
- Andreasen A. S., et al. Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects. Br. J. Nutr. 2010; 104, 1831-1838.
Go to original source...
Go to PubMed...
- Ogawa A., Kadooka Y., Kato K., Shirouchi B., Sato M. Lactobacillus gasseri SBT2055 reduces postprandial and fasting serum non-esterified fatty acid levels in Japanese hypertriacylglycerolemic subjects. Lipids Health Dis. 2014; 13, 36.
Go to original source...
Go to PubMed...
- Cani P. D, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 2007; 50, 2374-2383.
Go to original source...
Go to PubMed...
- Everard A, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 2011; 60, 2775-2786.
Go to original source...
Go to PubMed...
- Delzenne N. M., Neyrinck A. M., Cani P. D. Gut microbiota and metabolic disorders: how prebiotic can work? Br. J. Nutr. 2013; 109, 81-85.
Go to original source...
Go to PubMed...
- Dewulf E. M, et al. Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPARγ-related adipogenesis in the white adipose tissue of high-fat diet-fed mice. J. Nutr. Biochem. 2011; 22, 712-722.
Go to original source...
Go to PubMed...
- Cani P. D., Dewever C., Delzenne N. M. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br. J. Nutr. 2004; 92, 521-526.
Go to original source...
Go to PubMed...
- Cani P. D., Joly E., Horsmans Y., Delzenne N. M. Oligofructose promotes satiety in healthy human: a pilot study. Eur. J. Clin. Nutr. 2006; 60, 567-572.
Go to original source...
Go to PubMed...
- Li A. N., Li S., Zhang Y. J., Xu X. R., Chen Y. M., Li H. B. Resources and biological activities of natural polyphenols. Nutrients 2014; 6, 6020-6047.
Go to original source...
Go to PubMed...
- Roopchand D. E, et al. Dietary Polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet - induced metabolic syndrome. Diabetes 2015; 64, 2847-2858.
Go to original source...
Go to PubMed...
- Taira T, et al. Dietary polyphenols increase fecal mucin and immunoglobulin A and ameliorate the disturbance in gut microbiota caused by a high fat diet. J. Clin. Biochem. Nutr. 2015; 57, 212-216.
Go to original source...
Go to PubMed...
- Williamson G., Clifford M. N. Colonic metabolites of berry polyphenols: the missing link to biological activity? Br. J. Nutr. 2010; 104, 48-66.
Go to original source...
Go to PubMed...
- Zhao Y., Li X., Zeng X., Huang S., Hou S., Lai X. Characterization of phenolic constituents in Lithocarpus polystachyus. Anal. Methods 2014; 6, 1359.
Go to original source...
- González-Gallego J., García-Mediavilla M. V., Sánchez-Campos S., Tuñón M. J. Fruit polyphenols, immunity and inflammation. Br. J. Nutr. 2010; 104, 15-27.
Go to original source...
Go to PubMed...
- Kwon O, et al. Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB J. 2007; 21, 366-377.
Go to original source...
Go to PubMed...
- Hanhineva K, et al. Impact of Dietary Polyphenols on Carbohydrate Metabolism. Int. J. Mol. Sci. 2010; 11, 1365-1402.
Go to original source...
Go to PubMed...
- Stevens J. F., Maier C. S. The chemistry of gut microbial metabolism of polyphenols. Phytochem. Rev. 2016; 15, 425-444.
Go to original source...
Go to PubMed...
- Cardona F., Andrés-Lacueva C., Tulipani S., Tinahones F. J., Queipo-Ortuño M. I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 2013; 24, 1415-1422.
Go to original source...
Go to PubMed...
- Mei X, et al. Insulin sensitivity-enhancing activity of phlorizin is associated with lipopolysaccharide decrease and gut microbiota changes in obese and type 2 diabetes (db/db) Mice. J. Agric. Food Chem. 2016; 64, 7502-7511.
Go to original source...
Go to PubMed...
- Santacruz A, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br. J. Nutr. 2010; 104, 83-92.
Go to original source...
Go to PubMed...
- Masumoto S., Terao A., Yamamoto Y., Mukai T., Miura T., Shoji T. Non-absorbable apple procyanidins prevent obesity associated with gut microbial and metabolomic changes. Sci. Rep. 2016; 6, 31208.
Go to original source...
Go to PubMed...
- Baba S, et al. Bioavailability of (-)-epicatechin upon intake of chocolate and cocoa in human volunteers. Free Radic. Res. 2000; 33, 635-641.
Go to original source...
Go to PubMed...
- Gibson G. R. Dietary modulation of the human gut microflora using the prebiotics oligofructose and inulin. J. Nutr. 1999; 129, 1438-1441.
Go to original source...
Go to PubMed...
- Tzounis X, et al. Flavanol monomer-induced changes to the human faecal microflora. Br. J. Nutr. 2008; 99, 782-792.
Go to original source...
Go to PubMed...
- Hughes R., Magee E. A., Bingham S. Protein degradation in the large intestine: relevance to colorectal cancer. Curr. Issues Intest. Microbiol. 2000; 1, 51-58.
- Massot-Cladera M., Pérez-Berezo T., Franch A., Castell M., Pérez-Cano F. J. Cocoa modulatory effect on rat faecal microbiota and colonic crosstalk. Arch. Biochem. Biophys. 2012; 527, 105-112.
Go to original source...
Go to PubMed...
- Tzounis X., Rodriguez-Mateos A., Vulevic J., Gibson G. R., Kwik-Uribe C., Spencer J. P. E. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am. J. Clin. Nutr. 2011; 93, 62-72.
Go to original source...
Go to PubMed...
- Everard A, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 2013; 110, 9066-9071.
Go to original source...
Go to PubMed...
- Barrett A, et al. Inhibition of α-amylase and glucoamylase by tannins extracted from cocoa, pomegranates, cranberries, and grapes. J. Agric. Food Chem. 2013; 61, 1477-1486.
Go to original source...
Go to PubMed...
- Brandt L. J. Intestinal microbiota and the role of fecal microbiota transplant (FMT) in treatment of C. difficile Infection. Am. J. Gastroenterol. 2013; 108, 177-185.
Go to original source...
Go to PubMed...
- Konturek P. C, et al. Emerging role of fecal microbiota therapy in the treatment of gastrointestinal and extra-gastrointestinal diseases. J. Physiol. Pharmacol. 2015; 66, 483-491.
- Vrieze A, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 143, 913-917.
Go to original source...
Go to PubMed...
- Kulecka M, et al. Prolonged transfer of feces from the lean mice modulates gut microbiota in obese mice. Nutr. Metab. (Lond) 2016; 13, 57.
Go to original source...
Go to PubMed...