JOURNAL OF THE CZECH PHARMACEUTICAL SOCIETY AND THE SLOVAK PHARMACEUTICAL SOCIETY

Čes. slov. farm. 2016, 65(6):226-231 | DOI: 10.36290/csf.2016.044

Effect of EUDRAGIT® RS on the release behaviour of theophylline solid dispersions

Oluwaseun Orugun1, Avosuahi Oyi1, Adeniji Olowosulu1, Yonni Apeji1,*, Olubunmi Olayemi2
1 Department of Pharmaceutics and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
2 Department of Pharmaceutical Technology and Raw Materials Development, National Institute for Pharmaceutical Research and Development (NIPRD), Idu, Abuja

The purpose of this study was to extend the release of theophylline using Eudragit® RS 100 and Eudragit® RSPO as carriers. Solid dispersions of theophylline were prepared by the solvent evaporation technique using Eudragit® RS 100, Eudragit® RSPO and their blend in various drug : polymer ratios. The prepared solid dispersions were characterized with respect to entrapment efficiency, solubility and recovery yield. In vitro drug release of theophylline from the solid dispersions was evaluated in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) without enzymes. Solubility studies demonstrated a decrease in the solubility of the drug from the solid dispersions. The solubilities of pure drug and solid dispersions were lowered in SGF compared to SIF. Solid dispersions prepared with Eudragit® RS 100 entrapped a greater amount of theophylline in comparison to those with Eudragit® RSPO or the polymer blends and were able to extend the release of theophylline over 24 hrs. Formulation SD4 released 95.52% of the drug in SIF and 93.56% in SGF. Hence, it was selected as the optimized formulation because it was able to extend the release of theophylline over 24 hrs.

Keywords: solid dispersion; extended release; Eudragit®; drug release

Received: November 11, 2016; Accepted: December 1, 2016; Published: June 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Orugun O, Oyi A, Olowosulu A, Apeji Y, Olayemi O. Effect of EUDRAGIT® RS on the release behaviour of theophylline solid dispersions. Čes. slov. farm. 2016;65(6):226-231. doi: 10.36290/csf.2016.044.
Download citation

References

  1. Chalo C. S. L., Robinson J. R., Lee V. H. C. Sustained release drug delivery systems. In: Osol A., Gennaro A. R., Gibson M. R., et al. (eds.) Remington's Pharmaceutical Sciences, 17th ed. Pennsylvania: Mack Publishing Co. 1985.
  2. Lachman L., Lieberman H. A., Kanig J. I. The theory and practice of industrial pharmacy, 2nd ed. Bombay: Varghese Publishing House 1996.
  3. Giri T. K., Kumar K., Alexander A., Badwaik H., Tripathi D. K. A novel and alternative approach to controlled release drug delivery system based on solid dispersion technique. Bulletin of Faculty of Pharmacy, Cairo University 2012; 50(2), 147-159. Go to original source...
  4. Verma S., Rudraraju V. S. Disintegration mediated controlled release supersaturating solid dispersion formulation of an insoluble drug: design, development, optimization, and in vitro evaluation. AAPS PharmSciTech 2015; 16(1), 85-97. Go to original source... Go to PubMed...
  5. Perge L., Robitzer M., Guillemot C., Devoisselle J. M., Quignard F., Legrand P. New solid lipid microparticles for controlled ibuprofenrelease: formulation and characterization study. International Journal of Pharmacutics 2012; 422(1-2), 59-67. Go to original source... Go to PubMed...
  6. Kim H. J., Lee S. H., Lim E. A., Kim J. S. Formulation optimization of solid dispersion of mosapride hydrochloride. Archives of Pharmaceutical Research 2011; 34(9), 1467-1475. Go to original source... Go to PubMed...
  7. Hanan M. E. Optimzation of Eudragit RS microspheres for controlled release of theophylline using response surface methodology. Journal of Pharmaceutical Sciences and Research 2010; 2(10), 663-671.
  8. Katzung, B. G., Masters, S. B., Trevor, A. J. (eds.) Basic and Clinical Pharmacology, 11th ed. New York, NY: The McGraw-Hill Companies Inc. 2009.
  9. Ofokansi K. C., Kenechukwu F. C., Isah A. B., Allagh T. S., Anumeka O. O. Formulation and evaluation of solid dispersions based on Eudragit RS 100 and PEG8000 for improved delivery of trandolapril. Africa Journal of Pharmaceutical Research and Development 2012; 4(1), 38-42.
  10. Poovi G., Umamahaswari M., Sharmila S., Kumar S., Rajalakshimi N. Development of domperidone solid dispersions powders using sodium alginate as carrier. European Journal of Applied Sciences 2013; 5(2), 36-42.
  11. United States Pharmacopeia. Published by the United States Pharmacopoeia convention 2011.
  12. Aenugu S. R, Abbaraju K. S. Preparation and characterization of Aspirin loaded ethylcellulose nano particles by solvent evaporation technique. World Journal of Pharmacy and Pharmaceutical sciences 2014; 3(6), 1781-1793.
  13. Kothari S. H., Umar V., Banker G. S. Comparative evaluations of powder and mechanical properties of low crystallinity celluloses, microcrystalline celluloses, and powdered celluloses. International Journal of Pharmaceutics 2002; 232, 69-80. Go to original source... Go to PubMed...
  14. Bhimte N. A., Tayade P. T. Evaluation of microcrystalline cellulose prepared from sisal fibers as a tablet excipient: a technical note. AAPS PharmSciTech 2007; 8(1), E1-E7. Go to original source... Go to PubMed...
  15. Rathinarag B. S., Rajeer C., Choudhury P. K., Gannesh S. B., Shinde G. V. Studies on the dissolution behaviour of sustained release solid dispersions of nimodipine. International Journal of Pharmaceutical Sciences Review Research 2010; 3(1), 77-82.
  16. Aiman A. O. Modulation of the micro-environmental pH and its influence on the gel layer behaviour and release of theophylline from hydrophilic matrices. International Journal of Pharma and Bio Sciences 2013; 4(2), 794-802.
  17. Jenquin M., Liebowitz S. M., Sarabia R. E., McGinity J. W. Physical and chemical factors influencing the release of drugs from acrylic films. Journal of Pharmaceutical Sciences, 1990; 79, 811-816. Go to original source... Go to PubMed...
  18. Marwa H. A., Omaina A. S., Hanaa A. E., Hanan M. E., Waleed B. Development and characterization of controlled release ketoprofen microspheres. Journal of Applied Pharmaceutical Science 2012; 2(3), 60-67.
  19. Shivkumar H. N., Desai B.G., Deshmukh G. Design and optimization of diclofenac sodium controlled release solid dispersion by response surface methodology. Indian Journal of Pharmaceutical Sciences 2008; 70, 22-30. Go to original source... Go to PubMed...
  20. Kibbe, A. H. (ed.) Handbook of pharmaceutical excipients. Washington D.C., U.S.A: American Pharmaceutical Association 2000.
  21. Apurba S. A., Atiqul H. P., Golam K. Reza U. J. In vitro release kinetic study of theophylline from Eudragit RSPO and Eudragit RLPO matrix tablets.




Czech and Slovak Pharmacy

Madam, Sir,
please be aware that the website on which you intend to enter, not the general public because it contains technical information about medicines, including advertisements relating to medicinal products. This information and communication professionals are solely under §2 of the Act n.40/1995 Coll. Is active persons authorized to prescribe or supply (hereinafter expert).
Take note that if you are not an expert, you run the risk of danger to their health or the health of other persons, if you the obtained information improperly understood or interpreted, and especially advertising which may be part of this site, or whether you used it for self-diagnosis or medical treatment, whether in relation to each other in person or in relation to others.

I declare:

  1. that I have met the above instruction
  2. I'm an expert within the meaning of the Act n.40/1995 Coll. the regulation of advertising, as amended, and I am aware of the risks that would be a person other than the expert input to these sites exhibited


No

Yes

If your statement is not true, please be aware
that brings the risk of danger to their health or the health of others.