Čes. slov. farm. 2016, 65(2):52-63 | DOI: 10.36290/csf.2016.011
Mice lacking individual molecular forms of cholinesterases
- Farmaceutická fakulta, Univerzita Komenského, Katedra farmakológie a toxikológie, Bratislava, Slovenská republika
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) represent a small family of enzymes called cholinesterases. These enzymes are in the organisms either soluble or anchored through anchoring proteins collagen Q (ColQ) and proline-rich membrane anchor (PRiMA). Knowledge of molecular biology and genetics of cholinesterase and their anchoring proteins resulted in the preparation of mutant mice with the absence of different molecular forms of cholinesterases. So far a number of mutant mice were prepared with a genetic modification on the genes encoding cholinesterases or anchoring proteins. The mice with mutation in the genes encoding the cholinesterases are: the mice with the absence of AChE, mice with the absence of BChE, mice with a deletion of exon 5 and 6 in the AChE gene and mice with the absence of AChE in muscles. The mice with a mutation in the genes encoding anchoring proteins include the mice with the absence of AChE and BChE anchored by ColQ and mice with the absence of AChE and BChE anchored by PRiMA. The study of adaptation changes results from the absence of cholinesterases led to the enrichment of existing knowledge about cholinesterases and the cholinergic nervous system.
Keywords: absence of cholinesterases; mutant mice; acetylcholinesterase; butyrylcholinesterase
Received: November 18, 2015; Accepted: February 29, 2016; Published: February 1, 2016 Show citation
References
- Massoulié J., Pezzementi L., Bon S., Krejci E., Vallette F. M. Molecular and cellular biology of cholinesterases. Prog. Neurobiol. 1993; 41(1), 31-91.
Go to original source...
Go to PubMed...
- Hrabovská A. Localization, processing and function of cholinesterases in striatum. In: Striatum: anatomy, functions and role in disease. 1. vydanie. New York: Nova Sciene Publishers 2012; 1-36.
- Hrabovská A. Krejci E. Reassessment of the role of the central cholinergic system. J. Mol. Neurosci. 2014; 53(3), 352-358.
Go to original source...
Go to PubMed...
- Masson P., Lockridge O. Butyrylcholinesterase for protection from organophosphorus poisons: catalytic complexities and hysteretic behavior. Arch. Biochem. Biophys. 2010; 494(2), 107-120.
Go to original source...
Go to PubMed...
- Hrabovská A., Debouzy J. C., Froment M. T., Devínsky F., Pauliková I., Masson P. Rat butyrylcholinesterase-catalysed hydrolysis of N-alkyl homologues of benzoylcholine. FEBS J. 2006; 273(6), 1185-1197.
Go to original source...
Go to PubMed...
- Appleyard M. E., McDonald B. Acetylcholinesterase and butyrylcholinesterase activities in cerebrospinal fluid from different levels of the neuraxis of patients with dementia of Alzheimer type. J. Neurol. Neurosurg. Psychiatry 1992; 55(11), 1074-1078.
Go to original source...
Go to PubMed...
- Kálmán J., Juhász A., Janka Z., Rakonczay Z., Abrahám G., Boda K., Farkas T., Penke B. Serum butyrylcholinesterase activity in hyperlipidaemia. Atheroslerosis 2004; 173(1), 145-146.
Go to original source...
Go to PubMed...
- Manoharan I., Boopathy R., Darvesh S., Lockridge O. A medical health report on individuals with silent butyrylcholinesterase in the Vysya community of India. Clin. Chim. Acta. 2007; 378(1-2), 128-135.
Go to original source...
Go to PubMed...
- Getman G. T., Eubanks J. H., Camp S., Evans G. A., Taylor P. The human gene encoding acetylcholinesterase is located on the long arm of chromosome 7. Am. J. Hum. Genet. 1992; 51(1), 170-177.
- Arpagaus M., Kott M., Vatsis K. P., Bartels C. F., La Du B. N., Lockridge O. Structure of the gene for human butyrylcholinesterase. Evidence for a single copy. Biochemistry 1990; 29(1), 124-131.
Go to original source...
Go to PubMed...
- Massoulié J. The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 2002; 11, 130-143.
Go to original source...
Go to PubMed...
- Grisaru D., Deutsch V., Shapira M., Pick M., Sternfeld M., Melamed-Book N., Galyam N., Gait M. J., Owen D., Lessing J. B., Eldor A., Soreq H. ARP, a peptide derived from the stress-associated acetylcholinesterase variant, has hematopoietic growth promoting activities. Mol. Med. 2006; 7(2), 93-105.
- Zimmerman G., Soreq H. Readthrough acetylcholinesterase: a multifaceted inducer of stress reactions. J. Mol. Neurosci. 2006; 30(1-2), 197-200.
Go to original source...
Go to PubMed...
- Härtl R., Gleinich A., Zimmerman M. Dramatic increase in readthrough acetylcholinesterase in a cellular model of oxidative stress. J. Neurochem. 2011; 116(6), 1088-1096.
Go to original source...
Go to PubMed...
- Dori A., Ifergane G., Saar-Levy T., Bersudsky M., Mor I., Soreq H., Wirguin I. Readthrough acetylcholinesterase in inflammation-associated neuropathies. Life Sci. 2007; 80(24-25), 2369-2374.
Go to original source...
Go to PubMed...
- García-Ayllón M. S., Millán C., Serra-Basante C., Bataller R., Sáez-Valero J. Readthrough acetylcholinesterase is increased in human liver cirhosis. PLoS One 2012; 7(9), e44598.
Go to original source...
Go to PubMed...
- Pegan K., Matkovic U., Mars T., Mis K., Pirkmajer S., Brecelj J., Grubic Z. Acetylcholinesterase is involved in apoptosis in the precursors of human muscle regeneration. Chem. Biol. Interact. 2010; 187(1-3), 96-100.
Go to original source...
Go to PubMed...
- Berson A., Knobloch M., Hanan M., Diamant S., Sharoni M., Schippli D., Geyer B. C., Ravid R., Mor T. S:, Nitsch R. M., Soreq H. Changes in readthrough acetylcholinesterase expression modulate amyloid-beta pathology. Brain 2008; 131(Pt 1), 109-119.
Go to original source...
Go to PubMed...
- Li Y., Camp S., Rachinsky T. L., Getman D., Taylor P. Gene structure of mammalian acetylcholinesterase. Alternative exons dictate tissue-specific expression. J. Biol. Chem. 1991; 266(34), 23083-23090.
Go to original source...
- Montenegro M. F., Ruiz-Espejo F., Campoy F. J., Munoz-Delgado E., de la Cadena M. P., Rodríguez-Berrocal F. J., Vidal C J. Cholinesterases are down-expressed in human colorectal carcinoma. Cell. Mol. Life Sci. 2006; 63(18), 2175-2182.
Go to original source...
Go to PubMed...
- Montenegro M. F., Nieto-Cerón S., Cabezas-Herrera J., Munoz-Delgado E., Campoy F. J., Vidal C. J. Most acetylcholinesterase activity of non-nervous tissues and cells arises from the AChE-H transcript. J. Mol. Neurosci. 2014; 53(3), 429-435.
Go to original source...
Go to PubMed...
- Moral-Naranjo M. T., Montenegro M. F., Munoz-Delgado E., Campoy F. J., Vidal C. The levels of both lipid rafts and raft-located acetylcholinesterase dimers increase in muscle of mice with muscular dystrophy by merosin deficiency. Biochim. Biophys. Acta. 2010; 1802(9), 754-764.
Go to original source...
Go to PubMed...
- Rosenberry T. L., Roberts W. L., Haas R. Glycolipid membrane-binding domain of human erythrocyte acetylcholinesterase. Fed. Proc. 1986; 45(13), 2970-2975.
- Massoulié J., Anselmet A., Bon S., Krejci E., Legay C., Morel N., Simon S. Acetylcholinesterase: C-terminal domains, molecular forms and functional localization. J. Physiol. Paris. 1998; 92(3-4), 183-190.
Go to original source...
Go to PubMed...
- Massoulié J., Bon S., Perrier N., Falasca C. The C-terminal peptides of acetylcholinesterase: cellular trafficking, oligomerization and functional anchoring. Chem. Biol. Interact. 2005; 157-158, 3-14.
Go to original source...
Go to PubMed...
- Kučera M., Hrabovská A. Molekulové formy cholínesteráz a ich kotviace proteíny. Chemické listy 2013; 107, 695-700.
- Feng G., Krejci E., Molgo J., Cunningham j. M., Massoulié J., Sanes J. R. Genetic Analysis of Collagen Q: Roles in Acetylcholinesterase and Butyrylcholinesterase Assembly and in Synaptic Structure and Function. J. Cell Biol. 1999; 114(6), 1349-1360.
Go to original source...
Go to PubMed...
- Krejci E., Thomine S., Boschetti N., Legay C., Sketelj J., Massoulié J. The mammalian gene of acetylcholinesterase-associated collagen. J. Biol. Chem. 1997; 272(36), 22840-22847.
Go to original source...
Go to PubMed...
- Krejci E., Legay C., Thomine S., Sketelj J., Massoulié J. Differences in expression of acetylcholinesterase and collagen Q control the distribution and oligomerization of the collagen-tailed forms in fast and slow muscles. J. Neurosci. 1999; 19(24), 10672-10679.
Go to original source...
Go to PubMed...
- Sigoillot S.M., Bourgeosis F., Lambergeon M., Strochlic L., Legay C. ColQ controls postsynaptic differenciation at the neuromuscular junction. J. Neurosci. 2010; 30(1), 13-23.
Go to original source...
Go to PubMed...
- Engel A.G., Shen X. M., Selcen D., Sine S. M. What have we learned from the congenital myasthenic syndromes. J. Mol. Neurosci. 2010; 40(1-2), 143-153.
Go to original source...
Go to PubMed...
- Perrier A. L., Massoulié J., Krejci E. PRiMA: The Membrane Anchor of Acetycholinesterses in the Brain. Neuron. 2002; 33, 275-285.
Go to original source...
Go to PubMed...
- Chen V. P., Xie H. Q., Chan W. K., Leung K. W., Chan G. K., Choi R. C., Bon S., Massoulié J., Tsim K W. The PRiMA-linked tetramers are assembled from homodimers: hybrid molecules composed of acetylcholinesterase and butyrylcholinesterase dimers are up-regulated during development of chicken brain. J. Biol. Chem. 2010; 285(35), 27265-27278.
Go to original source...
Go to PubMed...
- Dobbertin A., Hrabovská A., Dembele K., Camp S., Taylor P., Krejci E., Bernard V. Targeting of acetylcholinesterase in neurons in vivo: A dual processing function for the Proline-Rich Membrane Anchor subunit and the attachment domain on the catalytic subunit. J. Neurosci. 2009; 18729(14), 4519-4530.
Go to original source...
Go to PubMed...
- García-Ayllón M. S., Campanari M. L., Montenegro M. F., Cuchillo Ibánez I., Belbin O., Lleó A., Tsim K., Vidal C. J., Sáez-Valero J. Presenilin-1 influences processing of the acetylcholinesterase membrane anchor PRiMA. Neurobiol. Aging. 2014; 35(7), 1526-1536.
Go to original source...
Go to PubMed...
- Dvir H., Harel M., Bon S., Liu W. Q., Vidal M., Barbay C., Sussman J. l., Massoulié J. Silman I. The synaptic acetylcholinesterase tetramer assembles around a polyproline II helix. EMBO J. 2004; 23(22), 4394-4405.
Go to original source...
Go to PubMed...
- Simon S.,Krejci E., Massoulié J. A four-to-one association between peptide motifs: four C-terminal domains from cholinesterase assemble with one proline-rich attachment domain (PRAD) in the secretory pathway. EMBO J. 1988; 7(10), 2983-2993.
- Xie W., Wilder P. J., Stribley J. A., Chatonnet A., Rizzino A., Taylor P., Hinrichs S. H., Lockridge O. Knockout of the acetylcholinesterase allele in the mouse. Chem. Biol. Interact. 1999; 119-120, 289-299.
Go to original source...
Go to PubMed...
- Xie W., Stribley J. A., Chatonnet A., Wilder P. J., Rizzino A., McComb R. D., Taylor P., Hinrichs S. H., Lockridge O. Postnatal developmental delay and supersensitivity to organophosphate in gene-targeted mice lacking acetylcholinesterase. J. Pharmacol. Exp. Ther. 2000; 293(3), 896-902.
Go to original source...
- Sun M., Lee C. J., Shin H. S. Reduced nicotinic receptor function in sympathetic ganglia is responsible for hypothermia in the acetylcholinesterase knockout mouse. J. Physiol. 2007; 578(Pt 3), 751-764.
Go to original source...
Go to PubMed...
- Li B., Stribley J. A., Ticu A., Xie W., Schopfer L. M., Hammond P., Brimijoin S., Hinrichs S. H., Lockridge O. Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse. J. Neurochem. 2000; 75(3), 1320-1231.
Go to original source...
Go to PubMed...
- Adler M., Manley H. A., Purcell A. L., Deshpande S. S., Hamilton T. A., Kan R. K., Oyler G. Lockridge O., Duysen E. G., Sheridan R. E. Reduced acetylcholine receptor density, morphological remodeling, and butyrylcholinesterase activity can sustain muscle function in acetylcholinesterase knockout mice. Muscle nerve. 2004; 30(3), 317-327.
Go to original source...
Go to PubMed...
- Hartmann J., Kiewert C., Duysen E. G., Lockridge O., Greig N. H., Klein J. Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. J. Neurochem. 2007; 100(5), 1421-1429.
Go to original source...
Go to PubMed...
- Duysen E.G., Li B., Xie W., Schopfer L. M., Anderson R. S., Broomfield C. A., Lockridge O. Evidence for nonacetylcholinesterase targets of organophosphorus nerve agent: supersensitivity of acetylcholinesterase konckout mouse to VX lethality. J. Pharmacol. Exp. Ther. 2001; 299(2), 528-535.
Go to original source...
- Duysen E.G., Stribley J. A., Fry D. L., Hinrichs S. H., Lockridge O. Rescue of the acetylcholinesterase knockout mouse by feeding a liquid diet; phenotype of the adult acetylcholinesterase deficient mouse. Brain Res. Dev. Brain Res. 2002; 137(1), 43-54.
Go to original source...
Go to PubMed...
- Gupta R. C., Patterson G. T., Dettbarn W. D. Mechanizms of toxicity and tolerance to diisopropylphosphorofluoridate at the neuromuscular junction of the rat. Toxicol. Appl. Pharmacol. 1986; 84(3), 541-550.
Go to original source...
Go to PubMed...
- Girard E., Bernard V., Camp S., Taylor P., Krejci E., Molgó J. Remodeling of the neuromuscular junction in mice with deleted exons 5 and 6 of acetylcholinesterase. J. Mol. Neurosci. 2006; 30(1-2), 99-100.
Go to original source...
Go to PubMed...
- Blondet B., Carpentier G., Ferry A., Chatonnet A., Courty J. Localization fo butyrylcholinesterase at the neuromuscular junction of normal and acetylcholinesterase knockout mice. J. Histochem. Cytochem. 2010; 58(12), 1075-1082.
Go to original source...
Go to PubMed...
- Hrabovská A., Duysen E. G., Sanders J. D., Murrin L. C., Lockridge O. Delivery of human acetylcholinesterase by adeno-associated virus to the acetylcholinesterase knockout mouse. Chem. Biol. Interact. 2005; 157-158, 71-78.
Go to original source...
Go to PubMed...
- Mesulam M.M., Guillozet A., Shaw p., Levey A., Duysen E. G., Lockridge O. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience 2002; 110(4), 627-639.
Go to original source...
Go to PubMed...
- Rice S. G., Nowak L., Duysen E. G., Lockridge O., Lahiri D. K., Reyes P. F. Neuropathological and immunochemical studies of brain parenchyma in acetylcholinesterase knockout mice: implications in Alzheimer's disease. J. Alzheimers Dis. 2007; 11(4), 481-489.
Go to original source...
Go to PubMed...
- Volpicelli-Daley L. A., Duysen E. G., Lockridge O., Levey A. I. Altered hippocampal muscarinic receptors on acetylcholinesterase-deficient mice. Ann. Neurol. 2003; 53(6), 788-796.
Go to original source...
Go to PubMed...
- Volpicelli-Daley L. A., Hrabovská A., Duysen E. G., Ferguson S. M., Blakely R. D., Lockridge O., Levey A. I. Altered striatal function and muscarinic cholinergic receptors in acetylcholinesterase knockout mice. Mol. Pharmacol. 2003; 64(6), 1309-1316.
Go to original source...
Go to PubMed...
- Bernard V., Brana C., Liste I., Lockridge O., Bloch B. Dramatic depletion of cell surface m2 muscarinic receptor due to limited delivery from intracytoplasmic stores in neurons of acetylcholinesterase-deficient mice. Mol. Cell Neurosci. 2003; 23(1), 121-133.
Go to original source...
Go to PubMed...
- Li B., Duysen E. G., Volpicelli-Daley L. A., Levey A. I. Lockridge O. Regulation of muscarinic acetylcholine receptor function in acetylcholinesterase knockout mice. Pharmacol. Biochem. Behav. 2003; 74(4), 977-986.
Go to original source...
Go to PubMed...
- Chatonnet F., Boudinot E., Chatonnet A., Taysse L., Daulon S., Champagnat J., Foutz A. S. Respiratory survival mechanisms in acetylcholinesterase knockout mouse. Eur. J. Neurosci. 2003; 18(6), 1419-1427.
Go to original source...
Go to PubMed...
- Hrabovská A., Farár V., Bernard V., Duysen E. G., Brabec J., Lockridge O., Mysliveček J. Drastic decrease in dopaminergic receptor levels in the striatum of acetylcholinesterase knock-out mouse. Chem. Biol. Interact. 2010; 183, 1, 194-201.
Go to original source...
Go to PubMed...
- Mysliveček J., Duysen E. G., Lockridge O. Adaptation to excess acetylcholine by downregulation of adrenoceptors and muscarinic receptors in lungs of acetylcholinesterase knockout mice. Naunyn Schmiedebergs Arch. Pharmacol. 2007; 376(1-2), 83-92.
Go to original source...
Go to PubMed...
- Farar V., Mohr F., Legrand M., Lamotte d'Inchamps B., Leroy J., Abitbol M., Bernard V., Baud F., Fournet V., Houze P., Klein J., Plaud B., Tuma J., Zimmermann M., Acher P., Hrabovská A., Mysliveček J., Krejci E. Near-complete adaptation of the PRiMA knockout to the lack of central acetylcholinesterase. J. Neurochem. 2012; 122(5), 1065-1080.
Go to original source...
Go to PubMed...
- Camp S., Zhang L., Marquez M., de la Torre B., Long J. M., Bucht G., Taylor P. Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion. Chem. Biol. Interact. 2005; 157-158, 79-86.
Go to original source...
Go to PubMed...
- Li B., Duysen E. G., Saunders T. L., Lockridge O. Production of the butyrylcholinesterase knockout mouse. J. Mol. Neurosci. 2006; 30(1-2), 193-195.
Go to original source...
Go to PubMed...
- Duysen E. G., Li B., Darvesh S., Lockridge O. Sensitivity of butyrylcholinesterase knockout mice to (-)-huperzine A and donepezil suggest humans with butyrylcholinesterase deficiency may not tolerate these Alzheimer's disease drugs and indicates butyrylcholnesterase function in neurotransmission. Toxicology 2007; 233(1-2), 60-69.
Go to original source...
Go to PubMed...
- Li B., Duysen E. G., Carlson M., Lockridge O. The butyrylcholinesterase knockout mouse as a model for human butyrylcholinesterase deficiency. J. Pharmacol. Exp. Ther. 2008; 324(3), 1146-1154.
Go to original source...
Go to PubMed...
- Li B., Duysen E. G., Lockridge O. The butyrylcholinesterase knockout mouse is obese on a high-fat diet. Chem. Biol. Interact. 2008; 175(1-3), 88-91.
Go to original source...
Go to PubMed...
- Rahimi Z., Ahmadi R., Vaisi-Raygani A., Rahimi Z., Bahrehmand F., Parsian A. Butyrylcholinesterase (BChE) activity is associated with the risk of preeclampsia: influence on lipid and lipoprotein metabolism and oxidative stress. J. Matern. Fetal Neonatal Med. 2013; 26(16), 1590-1594.
Go to original source...
Go to PubMed...
- Vallianou N. G., Evangelopoulos A. A., Bountziouka V., Bonou M. S., Katsagoni C., Vogiatzakis E. D., Avgerinos P. C., Barbetseas J., Panagiotakos D. B. Association of butyrylcholinesterase with cardiometabolic risk factors among apparently healthy adults. J. Cardiovasc. Med. (Hagerstown, Md.). 2014; 15(5), 377-383.
Go to original source...
Go to PubMed...
- Abbott C. A., Mackness M. I., Kumar S., Olukoga A. O., Gordon C., Arrol S., Bhatnagar D., Boulton A. J., Durrington P. N. Relationship between serum butyrylcholinesterase activity, hypertriglyceridaemia and insulin sensitivity in diabetes mellitus. Clin. Sci. (Lond.) 1993; 85(1), 77-81.
Go to original source...
Go to PubMed...
- Johnson G., Moore S. W. Why has butyrylcholinesterase been retained? Structural and functional diversification in a duplicated gene. Neurochem. Int. 2012; 61(5), 783-797.
Go to original source...
Go to PubMed...
- Lockridge O. Genetic variants of human serum cholinesterase influence metabolism of the muscle relaxant succinylcholine. Pharmacol. Ther. 1990; 47(1), 35-60.
Go to original source...
Go to PubMed...
- Hoffman R. S., Henry G. C., Wax P. M., Weisman R. S., Howland M. A., Goldfrank L. R. Decreased plasma cholinesterase activity enhances cocaine toxicity in mice. J. Pharmacol. Exp. Ther. 1992; 263(2), 698-702.
Go to original source...
- Duysen E. G., Li B., Carlson M., Li Y. F., Wieseler S., Hinrichs S. H., Lockridge O. Increased hepatotoxicity and cardiac fibrosis in cocaine treated butyrylcholinesterase knockout mice. Basic Clin. Pharmacol. Toxicol. 2008; 103(6), 514-521.
Go to original source...
Go to PubMed...
- Duysen E. G., Lockridge O. Prolonged toxic effects after cocaine challenge in butyrylcholinesterase/plasma carboxylesterase double knockout mice: a model for butyrylcholinesterase-defficent humans. Drug Metab. Dispos. 2011; 39(8), 1321-1323.
Go to original source...
Go to PubMed...
- Camp S., Zhang L., Krejci E., Dobbertin A., Bernard V., Girard E., Duysen E. G., Lockridge O., De Jaco A., Taylor P. Contributions of selective knockout studies to understanding cholinesterase disposition and function. Chem. Biol. Interact. 2010; 187(1-3), 72-77.
Go to original source...
Go to PubMed...
- Camp S., De Jaco A., Zhang L., Marquez M., De la Torre B., Taylor P. Acetylcholinesterase expression in muscle is specifically controlled by a promoter-selective enhancesome in the first intron. J. Neurosci. 2008; 28(10), 2459-2470.
Go to original source...
Go to PubMed...
- Girard E., Bernard V., Camp S., Taylor P., Krejci E., Molgó J. Remodeling of the neuromuscular junction in mice with deleted exons 5 and 6 of acetylcholinesterase. J. Mol. Neurosci. 2006; 30(1-2), 99-100.
Go to original source...
Go to PubMed...
- Boudinot E., Bernard V., Camp S., Taylor P., Champagnat J., Krejci E., Foutaz A. S. Influence of differential expression of acetylcholinesterase in brain and muscle on respiration. Respir. Physiol. Neurobiol. 2009; 165(1), 40-48.
Go to original source...
Go to PubMed...
- Fuentes M. E., Taylor P. Control of acetylcholinesterase gene expression during myogenesis. Neuron 1993; 10(4), 679-687.
Go to original source...
Go to PubMed...
- Boudreau-Lariviére C., Parry D. J., Jasmin B. J. Myotubes originating from single fast and slow satellite cells display similar patterns of AChE expression. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000; 278(1), 140-148.
Go to original source...
Go to PubMed...
- Angus L. M., Chan R. Y., Jasmin B. J. Role of intronic E- and N-box motifs in the transcriptional induction of the acetylcholinesterase gene during myogenic differentiation. J. Biol. Chem. 2001; 276(20), 17603-17609.
Go to original source...
Go to PubMed...
- Bernard V., Girard E., Hrabovská A., Camp S., Taylor P., Plaud B., Krejci E. Distinct localization of collagen Q and PRiMA forms of acetylcholinesterase at the neuromuscular junction. Mol. Cell. Neurosci. 2011; 46(1), 272-281.
Go to original source...
Go to PubMed...
- Minic J., Molgó J., Karlsson E., Krejci E. Regulation of acetylcholine released by muscarinic receptors at the mouse neuromuscular junction depends on the activity of acetylcholinesterase. Eur. J. Neurosci. 2002; 15(2), 439-448.
Go to original source...
Go to PubMed...
- Nguyen-Huu T., Dobbertin A., Barbier J., Minic J., Krejci E., DUvaldestin P., Molgó J. Cholinesterases and the resistance of the mouse diaphragm to the effect of tubocurarine. Anesthesiology 2005; 103(4), 788-795.
Go to original source...
Go to PubMed...
- Ohno K., Engel A. G., Brengman J. M., Shen X. M., Heidenreich F., Vincent A., Milone M., Tan E., Demirci M., Walsh P., Nakano S., Akiguchi I. The spectrum of mutations causing end-plate acetylcholinesterase deficiency. Ann. Neurol. 2000; 47(2), 162-170.
Go to original source...
- Engel A. G., Ohno K., Shen X. M., Sine S. M., Congenital myasthenic syndromes: multiple molecular targets at the neuromuscular junction. Ann. N. Y. Acad. Sci. 2003; 998, 138-160.
Go to original source...
Go to PubMed...
- Ohno K., Ito M., Kawakami Y., Ohtsuka K. Collagen Q is a key player for developing rational therapy for congenital myasthenia and for dissecting the mechanisms of anti-MuSK myasthenia gravis. J. Mol. Neurosci. 2014; 53(3), 359-361.
Go to original source...
Go to PubMed...
- Farar V., Hrabovská A., Krejci E., Mysliveček J. Developmental adaptation of central nervous system to extremely high acetylcholine levels. PLoS One. 2013; 8(7), e68265.
Go to original source...
Go to PubMed...