JOURNAL OF THE CZECH PHARMACEUTICAL SOCIETY AND THE SLOVAK PHARMACEUTICAL SOCIETY

Čes. slov. farm. 2014, 63(6):239-247 | DOI: 10.36290/csf.2014.046

Nanoparticulates with drug release based on temperature change

Miloslava Rabišková1,*, Eva Koziolová2, Johana Jirásková1
1 Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University in Prague, Hradec Králové
2 Institute of Macromolecular Chemistry, Czech Academy of Science, Praha

The stimuli-induced release systems are able to respond to an external stimulus resulting in drug release in a controlled pattern. The origin of the external stimuli may be of physical, chemical or biological nature. Thermo-responsive delivery systems respond to the change in temperature and they were mainly designed in order to be used in the cancer treatment method using elevated temperature, i.e. hyperthermia. The thermo-responsive systems can be divided into several groups, such as thermo-responsive hydrogel polymer systems, liposomes, nano- or microparticles, and polypeptide-drug conjugates. While liposomes are temperature-sensitive by their nature, the other systems are usually based on thermo-sensitive polymers, namely poly-(N-isopropyl-acrylamide). This article summarizes recently available items of information regarding thermo-responsive drug delivery.

Keywords: drug delivery system; thermo-responsive system; poly-(N-isopropyl-acrylamide); liposome; nanoparticle; polypeptide-drug conjugate

Received: November 26, 2014; Accepted: December 21, 2014; Published: June 1, 2014  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Rabišková M, Koziolová E, Jirásková J. Nanoparticulates with drug release based on temperature change. Čes. slov. farm. 2014;63(6):239-247. doi: 10.36290/csf.2014.046.
Download citation

References

  1. Rabišková M., Fričová V. Perorální lékové formy s řízeným uvolňováním léčiv. Prakt. lékáren. 2008; 4, 212-216.
  2. Dostálová M., Rabišková M. Mukoadhezivní orální tablety - moderní léková forma s řízeným uvolňováním léčiva. Čes. slov. Farm. 2000; 49, 55-61.
  3. Rabišková M. Moderní lékové formy pro orální a perorální aplikaci. Bratislava: Farmaceutická fakulta Univerzity Komenského 2009.
  4. Dvořáčková K., Rabišková M. Vaginální aplikace léčiv - nové směry. Praktické lékárenství 2006; 2, 93-97.
  5. Bautzová T., Rabišková M., Lamprecht A. Multiparticulate systems containing 5-ASA for the treatment of inflammatory bowel disease. Drug Dev. Ind. Pharm. 2011; 37, 1100-1109. Go to original source... Go to PubMed...
  6. Rabišková M. Nanočástice pro lékové formy. Remedia 2007; 17, 495-501.
  7. Roy D., Cambre J. N., Sumerlin B. S. Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci. 2010; 35, 278-301. Go to original source...
  8. Gupta P., Vermani K., Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today 2002; 7, 569-579. Go to original source... Go to PubMed...
  9. Fleige E., Quadir M. A., Haag R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv. Drug Deliv. Rev. 2012; 64, 866-884. Go to original source... Go to PubMed...
  10. Engin K. Biological rationale and clinical experience with hyperthermia. Control. Clin. Trials 1996; 17, 316-342. Go to original source... Go to PubMed...
  11. Wust P., Hildebrand B., Sreenivasa G. Hyperthermia in combined treatment of cancer. Lancet Oncology 2002; 3, 487-497. Go to original source... Go to PubMed...
  12. Gaber M. H., Wu N. Z., Hong K. L. Thermosensitive liposomes: Extravasation and release of contents in tumor microvascular networks. Int. J. Radiat. Oncol. 1996; 36, 1177-1187. Go to original source... Go to PubMed...
  13. Meyer D. E., Shin B. C., Kong H. A. Drug targeting using thermally responsive polymers and local hyperthermia. J. Control. Rel. 2001; 74, 213-224. Go to original source... Go to PubMed...
  14. Ganta S., Devalapally H., Shahiwala A. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Rel. 2008; 126, 187-204. Go to original source... Go to PubMed...
  15. Maeda H., Wu J., Sawa T. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Rel. 2000; 65, 271-284. Go to original source... Go to PubMed...
  16. Nakayama M., Okano T. Multi-targeting cancer chemotherapy using temperature-responsive drug carrier systems. React. Funct. Polym. 2011; 71, 235-244. Go to original source...
  17. Li L., Ten Hagen T. L., Bolkestein M. Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia. J. Control. Rel. 2013; 167, 130-137. Go to original source... Go to PubMed...
  18. Harrington K. J., Mohammadtaghi S., Uster P. S. Effective targeting of solid tumors in patients with locally advanced cancer by radiolabeled pegylated liposomes. Clin. Cancer Res. 2001; 7, 243-254.
  19. Li L., Ten Hagen T. L., Haeri A. A novel two-step mild hyperthermia for advanced liposomal chemotherapy. J. Control. Rel. 2014; 174, 202-208. Go to original source... Go to PubMed...
  20. Dicheva B. M., Koning G. A. Targeted thermosensitive liposomes: an attractive novel approach for increased drug delivery of solid tumors. Expert Opin. Drug Deliv. 2014; 11, 83-100. Go to original source... Go to PubMed...
  21. Marsh D. General features of phospholipid phase transitions. Chemistry and Physics of Lipids 1991; 57, 109-120. Go to original source... Go to PubMed...
  22. Klouda L., Mikos A. G. Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm. 2008; 68, 34-45. Go to original source... Go to PubMed...
  23. Bromberg L. E., Ron E. S. Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv. Drug Deliv. Rev. 1998; 31, 197-221. Go to original source... Go to PubMed...
  24. Abulateefeh S. R., Samer R., Spain A. G. Thermoresponsive polymer colloids for drug delivery and cancer therapy. Macromol. Biosci. 2011; 11, 1722-1734. Go to original source... Go to PubMed...
  25. Curcio M., Spizzimi U. G., Iemma F. Grafted thermo-responsive gelatin microspheres as delivery systems in triggered drug release. Eur. J. Pharm. Biopharm. 2010; 76, 48-55. Go to original source... Go to PubMed...
  26. Yoshida R., Sakai K., Okano T. Drug release profiles in the shrinking process of thermoresponsive poly(N-isopropylacrylamide-co-alkyl methacrylate) gels. Ind. Eng. Chem. Res. 1992; 31, 2339-2345. Go to original source...
  27. Yoshino K., Kadowaki A., Takagishi T. Temperature sensitization of liposomes by use of N-isopropylacrylamide copolymers with varying transition endotherms. Bioconjugate Chem. 2004; 15, 1102-1109. Go to original source... Go to PubMed...
  28. Chu L. Y., Park S. H., Yamaguchi T. Preparation of thermo-responsive core-shell microcapsules with a porous membrane and poly(N-isopropylacrylamide) gates. J. Membrane Sci. 2001; 192, 27-39. Go to original source...
  29. Rabišková M. Využití nanočásticových systémů v medicíně. Remedia 2008; 18, 89-97.
  30. Yoshida R., Uchida K. Kaneko Y. Comb-type grafted hydrogels with rapid de-swelling response to temperature-changes. Nature 1995; 374, 240-242. Go to original source...
  31. Kaneko Y., Nakamura S., Sakai K. Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains. Macromolecules 1998; 31, 6099-6105. Go to original source...
  32. Bae Y. H., Okano T., Kim, S. W. On/off thermocontrol of solute transport. 1. Temperature-dependence of swelling of N-isopropylacrylamide networks modified with hydrophobic components in water. Pharm. Res. 1991; 8, 531-537. Go to original source... Go to PubMed...
  33. Okuyama Y., Yoshida R., Sakai K. Swelling controlled zero order and sigmoidal drug release from thermo-responsive poly(N-isopropylacrylamide-co-butyl methacrylate) hydrogel. J. Biomater. Sci. 1993; 4, 545-556. Go to original source...
  34. Kaneko Y., Sakai K., Kikuchi A. Fast swelling/deswelling kinetics of comb-type grafted poly(N-isopropylacrylamide) hydrogels. Macromolecular Symposia 1996; 109, 41-53. Go to original source...
  35. Oh K. S., Han S. K., Choi Y. W. Hydrogen-bonded polymer gel and its application as a temperature-sensitive drug delivery system. Biomaterials 2004; 25, 2393-2398. Go to original source... Go to PubMed...
  36. Shaw A. W., Mclean M. A., Sligar S. G. Phospholipid phase transitions in homogeneous nanometer scale bilayer discs. FEBS Letters 2004; 556, 260-264. Go to original source... Go to PubMed...
  37. Yatvin M., Weinstein J. N. Dennis W. H. Design of liposomes for enhanced local release of drugs by hyperthermia. Science 1978; 202, 1290-1293. Go to original source... Go to PubMed...
  38. Weinstein J., Magin R. L., Yatvin M. Liposomes and local hyperthermia: selective delivery of methotrexate to heated tumors. Science 1979; 204, 188-191. Go to original source... Go to PubMed...
  39. Needham D., Anyarambhatla G., Kong G. A new temperature-sensitive liposome for use with mild hyperthermia: Characterization and testing in a human tumor xenograft model. Cancer Res. 2000; 60, 1197-1201.
  40. Kneidl B., Peller M., Winter G. Thermosensitive liposomal drug delivery systems: state of the art review. Int. J. Nanomed. 2014; 9, 4387-4398. Go to original source... Go to PubMed...
  41. Landon C. D., Park J. Y., Needham D. Nanoscale drug delivery and hyperthermia: the materials design and preclinical and clinical testing of low temperature-sensitive liposomes used in combination with mild hyperthermia in the treatment of local cancer. Open Nanomed. J. 2011; 3, 38-64. Go to original source... Go to PubMed...
  42. Phase 3 Study of ThermoDox with radiofrequency ablation (RFA) in treatment of hepatocellular carcinoma (HCC) [online]. CLINICALTRIALS.GOV, 2014-11-16 [cited 2014 11-16]. Available from: http://www.clinicaltrials.gov/ct2/show/NCT00617981?term=ThermoDox&rank=3.
  43. Lindner L. H., Eichhorn M. E., Eibl H. Novel temperature-sensitive liposomes with prolonged circulation time. Clin. Cancer Res. 2004; 10, 2168-2178. Go to original source... Go to PubMed...
  44. Li, L. Triggered content release from optimized stealth thermosensitive liposomes using mild hyperthermia. J. Control. Rel. 2010; 143, 274-279. Go to original source... Go to PubMed...
  45. Tagami T., Ernsting M. J., Li S.-D. Efficient tumor regression by a single and low dose treatment with a novel and enhanced formulation of thermosensitive liposomal doxorubicin. J. Control. Rel. 2011; 152, 303-309. Go to original source... Go to PubMed...
  46. Kono K. Thermosensitive polymer-modified liposomes. Adv. Drug Deliv. Rev. 2001; 53, 307-319. Go to original source... Go to PubMed...
  47. Fletcher P. D. Self-assembly of micelles and microemulsions. Cur. Opin. Colloid Interface Sci. 1996; 1, 101-106. Go to original source...
  48. Kwon G. S., Kataoka, K. Block-copolymer micelles as long-circulating drug vehicles. Adv. Drug Deliv. Rev. 1995; 16, 295-309. Go to original source...
  49. Gaucher G., Dufresne M. H., Sant V. P. Block copolymer micelles: preparation, characterization and application in drug delivery. J. Control. Rel. 2005; 109, 169-188. Go to original source... Go to PubMed...
  50. Neradovic D., Soga O., Van Nostrum C. S. The effect of the processing and formulation parameters on the size of nanoparticles based on block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) with and without hydrolytically sensitive groups. Biomaterials 2004; 25, 2409-2418. Go to original source... Go to PubMed...
  51. Chung J. E., Yokoyama M., Okano T. Inner core segment design for drug delivery control of thermo-responsive polymeric micelles. J. Control. Rel. 2000; 65, 93-103. Go to original source... Go to PubMed...
  52. Nakayama M., Chung J. E., Miyazaki T. Thermal modulation of intracellular drug distribution using thermoresponsive polymeric micelles. React. Funct. Polym. 2007; 67, 1398-1407. Go to original source...
  53. Kohori F., Sakai K., Aoyagi T. Control of adriamycin cytotoxic activity using thermally responsive polymeric micelles composed of poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)- -b-poly(d,l-lactide). Colloids and Surfaces B: Biointerfaces 1999; 16, 195-205. Go to original source...
  54. Kohori F., Yokoyama M., Sakai K. Process design for efficient and controlled drug incorporation into polymeric micelle carrier systems. J. Control. Rel. 2002; 78, 155-163. Go to original source... Go to PubMed...
  55. Nakayama M., Okano T., Miyazaki T. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J. Control. Rel. 2006; 115, 46-56. Go to original source... Go to PubMed...
  56. Qin S., Geng Y., Discher D. E. Temperature-controlled assembly and release from polymer vesicles of poly(ethylene oxide)-block-poly(N-isopropylacrylamide). Adv. Mater. 2006; 18, 2905-2909. Go to original source...
  57. Zhao Y., Fan X., Liu D. PEGylated thermo-sensitive poly(amidoamine) dendritic drug delivery systems. Int. J. Pharm. 2011; 409, 229-236. Go to original source... Go to PubMed...
  58. Urry D. W. Entropic elastic processes in protein mechanisms. I. Elastic structure due to an inverse temperature transition and elasticity due to internal chain dynamics. J. Protein Chem. 1988; 7, 1-34. Go to original source... Go to PubMed...
  59. Meyer D. E., Chilkoti A. Quantification of the effects of chain length and concentration on the thermal behavior of elastin-like polypeptides. Biomacromolecules 2004; 5, 846-851. Go to original source... Go to PubMed...
  60. Bidwell G. L., Davis A. N., Fokt I. A thermally targeted elastin-like polypeptide-doxorubicin conjugate overcomes drug resistance. Invest. New Drug. 2007; 25, 313-326. Go to original source... Go to PubMed...
  61. Bidwell G. L., Raucher D. Application of thermally responsive polypeptides directed against c-Myc transcriptional function for cancer therapy. Mol. Cancer Ther. 2005; 4, 1076-1085. Go to original source... Go to PubMed...
  62. Massodi I., Bidwell G. L., Davis A. N. Inhibition of ovarian cancer cell metastasis by a fusion polypeptide Tat-ELP. Clin. Exper. Metastasis 2009; 26, 251-260. Go to original source... Go to PubMed...
  63. Massodi I., Moktan S., Rawat A. Inhibition of ovarian cancer cell proliferation by a cell cycle inhibitory peptide fused to a thermally responsive polypeptide carrier. Int. J. Cancer 2010; 126, 533-544. Go to original source... Go to PubMed...
  64. Meyer D. E., Kong G. A., Dewhirst M. W. Targeting a genetically engineered elastin-like polypeptide to solid tumors by local hyperthermia. Cancer Res. 2001; 61, 1548-1554.
  65. Chilkoti A., Dreher M. R., Meyer D. E. Design of thermally responsive, recombinant polypeptide carriers for targeted drug delivery. Adv. Drug Deliv. Rev. 2002; 54, 1093-1111. Go to original source... Go to PubMed...
  66. Meyer D. E., Shin, S. C., Kong G. A. Drug targeting using thermally responsive polymers and local hyperthermia. J. Control. Rel. 2001; 74, 213-224. Go to original source... Go to PubMed...
  67. Chilkoti A., Dreher M. R., Meyer D. E. Targeted drug delivery by thermally responsive polymers. Adv. Drug Deliv. Rev. 2002; 54, 613-630. Go to original source... Go to PubMed...




Czech and Slovak Pharmacy

Madam, Sir,
please be aware that the website on which you intend to enter, not the general public because it contains technical information about medicines, including advertisements relating to medicinal products. This information and communication professionals are solely under §2 of the Act n.40/1995 Coll. Is active persons authorized to prescribe or supply (hereinafter expert).
Take note that if you are not an expert, you run the risk of danger to their health or the health of other persons, if you the obtained information improperly understood or interpreted, and especially advertising which may be part of this site, or whether you used it for self-diagnosis or medical treatment, whether in relation to each other in person or in relation to others.

I declare:

  1. that I have met the above instruction
  2. I'm an expert within the meaning of the Act n.40/1995 Coll. the regulation of advertising, as amended, and I am aware of the risks that would be a person other than the expert input to these sites exhibited


No

Yes

If your statement is not true, please be aware
that brings the risk of danger to their health or the health of others.