ČASOPIS ČESKÉ FARMACEUTICKÉ SPOLEČNOSTI A SLOVENSKÉ FARMACEUTICKÉ SPOLEČNOSTI

Čes. slov. farm. 2016, 65(2):52-63 | DOI: 10.36290/csf.2016.011

Myši s absenciou jednotlivých molekulových foriem cholínesteráz

Matej Kučera*, Anna Hrabovská
Farmaceutická fakulta, Univerzita Komenského, Katedra farmakológie a toxikológie, Bratislava, Slovenská republika

Acetylcholínesteráza (AChE) a butyrylcholínesteráza (BChE) tvoria malú rodinu enzýmov nazývaných cholínesterázy. Tieto enzýmy sú v organizme buď solubilné, alebo kotvené prostredníctvom kotviacich proteínov kolagénu Q (ColQ) a membránovej kotvy bohatej na prolín (PRiMA). Poznatky z molekulovej biológie a genetiky cholínesteráz a ich kotviacich proteínov viedli ku príprave mutantných myší s absenciou rôznych molekulových foriem cholínesteráz. Do dnešných dní bolo pripravených viacero mutantných myší s genetickou modifikáciou na úrovni génov pre cholínestrázy alebo ich kotviace proteíny. Medzi myši s mutáciou v génoch kódujúcich cholínesterázy patria predovšetkým: myši s celkovou absenciou AChE, myši s celkovou absenciou BChE, myši s deléciou exónu 5 a 6 v géne kódujúcom AChE a myši s absenciou AChE vo svaloch. Medzi myši s mutáciou v génoch kódujúcich kotviace proteíny cholínesteráz patria: myši s absenciou AChE a BChE kotvenej prostredníctvom proteínu ColQ a myši s absenciou AChE a BChE kotvenej prostredníctvom proteínu PRiMA. Na základe štúdia zmien vyplývajúcich z absencie cholínesteráz, tieto mutantné zvieratá výrazne prispeli k obohateniu doterajších poznatkov o cholínesterázach a cholinergickom nervovom systéme.

Klíčová slova: absencia cholínesteráz; mutantné myši; acetylcholínesteráza; butyrylcholínesteráza

Mice lacking individual molecular forms of cholinesterases

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) represent a small family of enzymes called cholinesterases. These enzymes are in the organisms either soluble or anchored through anchoring proteins collagen Q (ColQ) and proline-rich membrane anchor (PRiMA). Knowledge of molecular biology and genetics of cholinesterase and their anchoring proteins resulted in the preparation of mutant mice with the absence of different molecular forms of cholinesterases. So far a number of mutant mice were prepared with a genetic modification on the genes encoding cholinesterases or anchoring proteins. The mice with mutation in the genes encoding the cholinesterases are: the mice with the absence of AChE, mice with the absence of BChE, mice with a deletion of exon 5 and 6 in the AChE gene and mice with the absence of AChE in muscles. The mice with a mutation in the genes encoding anchoring proteins include the mice with the absence of AChE and BChE anchored by ColQ and mice with the absence of AChE and BChE anchored by PRiMA. The study of adaptation changes results from the absence of cholinesterases led to the enrichment of existing knowledge about cholinesterases and the cholinergic nervous system.

Keywords: absence of cholinesterases; mutant mice; acetylcholinesterase; butyrylcholinesterase

Vloženo: 18. listopad 2015; Přijato: 29. únor 2016; Zveřejněno: 1. únor 2016  Zobrazit citaci

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kučera M, Hrabovská A. Myši s absenciou jednotlivých molekulových foriem cholínesteráz. Čes. slov. farm. 2016;65(2):52-63. doi: 10.36290/csf.2016.011.
Stáhnout citaci

Reference

  1. Massoulié J., Pezzementi L., Bon S., Krejci E., Vallette F. M. Molecular and cellular biology of cholinesterases. Prog. Neurobiol. 1993; 41(1), 31-91. Přejít k původnímu zdroji... Přejít na PubMed...
  2. Hrabovská A. Localization, processing and function of cholinesterases in striatum. In: Striatum: anatomy, functions and role in disease. 1. vydanie. New York: Nova Sciene Publishers 2012; 1-36.
  3. Hrabovská A. Krejci E. Reassessment of the role of the central cholinergic system. J. Mol. Neurosci. 2014; 53(3), 352-358. Přejít k původnímu zdroji... Přejít na PubMed...
  4. Masson P., Lockridge O. Butyrylcholinesterase for protection from organophosphorus poisons: catalytic complexities and hysteretic behavior. Arch. Biochem. Biophys. 2010; 494(2), 107-120. Přejít k původnímu zdroji... Přejít na PubMed...
  5. Hrabovská A., Debouzy J. C., Froment M. T., Devínsky F., Pauliková I., Masson P. Rat butyrylcholinesterase-catalysed hydrolysis of N-alkyl homologues of benzoylcholine. FEBS J. 2006; 273(6), 1185-1197. Přejít k původnímu zdroji... Přejít na PubMed...
  6. Appleyard M. E., McDonald B. Acetylcholinesterase and butyrylcholinesterase activities in cerebrospinal fluid from different levels of the neuraxis of patients with dementia of Alzheimer type. J. Neurol. Neurosurg. Psychiatry 1992; 55(11), 1074-1078. Přejít k původnímu zdroji... Přejít na PubMed...
  7. Kálmán J., Juhász A., Janka Z., Rakonczay Z., Abrahám G., Boda K., Farkas T., Penke B. Serum butyrylcholinesterase activity in hyperlipidaemia. Atheroslerosis 2004; 173(1), 145-146. Přejít k původnímu zdroji... Přejít na PubMed...
  8. Manoharan I., Boopathy R., Darvesh S., Lockridge O. A medical health report on individuals with silent butyrylcholinesterase in the Vysya community of India. Clin. Chim. Acta. 2007; 378(1-2), 128-135. Přejít k původnímu zdroji... Přejít na PubMed...
  9. Getman G. T., Eubanks J. H., Camp S., Evans G. A., Taylor P. The human gene encoding acetylcholinesterase is located on the long arm of chromosome 7. Am. J. Hum. Genet. 1992; 51(1), 170-177.
  10. Arpagaus M., Kott M., Vatsis K. P., Bartels C. F., La Du B. N., Lockridge O. Structure of the gene for human butyrylcholinesterase. Evidence for a single copy. Biochemistry 1990; 29(1), 124-131. Přejít k původnímu zdroji... Přejít na PubMed...
  11. Massoulié J. The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 2002; 11, 130-143. Přejít k původnímu zdroji... Přejít na PubMed...
  12. Grisaru D., Deutsch V., Shapira M., Pick M., Sternfeld M., Melamed-Book N., Galyam N., Gait M. J., Owen D., Lessing J. B., Eldor A., Soreq H. ARP, a peptide derived from the stress-associated acetylcholinesterase variant, has hematopoietic growth promoting activities. Mol. Med. 2006; 7(2), 93-105.
  13. Zimmerman G., Soreq H. Readthrough acetylcholinesterase: a multifaceted inducer of stress reactions. J. Mol. Neurosci. 2006; 30(1-2), 197-200. Přejít k původnímu zdroji... Přejít na PubMed...
  14. Härtl R., Gleinich A., Zimmerman M. Dramatic increase in readthrough acetylcholinesterase in a cellular model of oxidative stress. J. Neurochem. 2011; 116(6), 1088-1096. Přejít k původnímu zdroji... Přejít na PubMed...
  15. Dori A., Ifergane G., Saar-Levy T., Bersudsky M., Mor I., Soreq H., Wirguin I. Readthrough acetylcholinesterase in inflammation-associated neuropathies. Life Sci. 2007; 80(24-25), 2369-2374. Přejít k původnímu zdroji... Přejít na PubMed...
  16. García-Ayllón M. S., Millán C., Serra-Basante C., Bataller R., Sáez-Valero J. Readthrough acetylcholinesterase is increased in human liver cirhosis. PLoS One 2012; 7(9), e44598. Přejít k původnímu zdroji... Přejít na PubMed...
  17. Pegan K., Matkovic U., Mars T., Mis K., Pirkmajer S., Brecelj J., Grubic Z. Acetylcholinesterase is involved in apoptosis in the precursors of human muscle regeneration. Chem. Biol. Interact. 2010; 187(1-3), 96-100. Přejít k původnímu zdroji... Přejít na PubMed...
  18. Berson A., Knobloch M., Hanan M., Diamant S., Sharoni M., Schippli D., Geyer B. C., Ravid R., Mor T. S:, Nitsch R. M., Soreq H. Changes in readthrough acetylcholinesterase expression modulate amyloid-beta pathology. Brain 2008; 131(Pt 1), 109-119. Přejít k původnímu zdroji... Přejít na PubMed...
  19. Li Y., Camp S., Rachinsky T. L., Getman D., Taylor P. Gene structure of mammalian acetylcholinesterase. Alternative exons dictate tissue-specific expression. J. Biol. Chem. 1991; 266(34), 23083-23090. Přejít k původnímu zdroji...
  20. Montenegro M. F., Ruiz-Espejo F., Campoy F. J., Munoz-Delgado E., de la Cadena M. P., Rodríguez-Berrocal F. J., Vidal C J. Cholinesterases are down-expressed in human colorectal carcinoma. Cell. Mol. Life Sci. 2006; 63(18), 2175-2182. Přejít k původnímu zdroji... Přejít na PubMed...
  21. Montenegro M. F., Nieto-Cerón S., Cabezas-Herrera J., Munoz-Delgado E., Campoy F. J., Vidal C. J. Most acetylcholinesterase activity of non-nervous tissues and cells arises from the AChE-H transcript. J. Mol. Neurosci. 2014; 53(3), 429-435. Přejít k původnímu zdroji... Přejít na PubMed...
  22. Moral-Naranjo M. T., Montenegro M. F., Munoz-Delgado E., Campoy F. J., Vidal C. The levels of both lipid rafts and raft-located acetylcholinesterase dimers increase in muscle of mice with muscular dystrophy by merosin deficiency. Biochim. Biophys. Acta. 2010; 1802(9), 754-764. Přejít k původnímu zdroji... Přejít na PubMed...
  23. Rosenberry T. L., Roberts W. L., Haas R. Glycolipid membrane-binding domain of human erythrocyte acetylcholinesterase. Fed. Proc. 1986; 45(13), 2970-2975.
  24. Massoulié J., Anselmet A., Bon S., Krejci E., Legay C., Morel N., Simon S. Acetylcholinesterase: C-terminal domains, molecular forms and functional localization. J. Physiol. Paris. 1998; 92(3-4), 183-190. Přejít k původnímu zdroji... Přejít na PubMed...
  25. Massoulié J., Bon S., Perrier N., Falasca C. The C-terminal peptides of acetylcholinesterase: cellular trafficking, oligomerization and functional anchoring. Chem. Biol. Interact. 2005; 157-158, 3-14. Přejít k původnímu zdroji... Přejít na PubMed...
  26. Kučera M., Hrabovská A. Molekulové formy cholínesteráz a ich kotviace proteíny. Chemické listy 2013; 107, 695-700.
  27. Feng G., Krejci E., Molgo J., Cunningham j. M., Massoulié J., Sanes J. R. Genetic Analysis of Collagen Q: Roles in Acetylcholinesterase and Butyrylcholinesterase Assembly and in Synaptic Structure and Function. J. Cell Biol. 1999; 114(6), 1349-1360. Přejít k původnímu zdroji... Přejít na PubMed...
  28. Krejci E., Thomine S., Boschetti N., Legay C., Sketelj J., Massoulié J. The mammalian gene of acetylcholinesterase-associated collagen. J. Biol. Chem. 1997; 272(36), 22840-22847. Přejít k původnímu zdroji... Přejít na PubMed...
  29. Krejci E., Legay C., Thomine S., Sketelj J., Massoulié J. Differences in expression of acetylcholinesterase and collagen Q control the distribution and oligomerization of the collagen-tailed forms in fast and slow muscles. J. Neurosci. 1999; 19(24), 10672-10679. Přejít k původnímu zdroji... Přejít na PubMed...
  30. Sigoillot S.M., Bourgeosis F., Lambergeon M., Strochlic L., Legay C. ColQ controls postsynaptic differenciation at the neuromuscular junction. J. Neurosci. 2010; 30(1), 13-23. Přejít k původnímu zdroji... Přejít na PubMed...
  31. Engel A.G., Shen X. M., Selcen D., Sine S. M. What have we learned from the congenital myasthenic syndromes. J. Mol. Neurosci. 2010; 40(1-2), 143-153. Přejít k původnímu zdroji... Přejít na PubMed...
  32. Perrier A. L., Massoulié J., Krejci E. PRiMA: The Membrane Anchor of Acetycholinesterses in the Brain. Neuron. 2002; 33, 275-285. Přejít k původnímu zdroji... Přejít na PubMed...
  33. Chen V. P., Xie H. Q., Chan W. K., Leung K. W., Chan G. K., Choi R. C., Bon S., Massoulié J., Tsim K W. The PRiMA-linked tetramers are assembled from homodimers: hybrid molecules composed of acetylcholinesterase and butyrylcholinesterase dimers are up-regulated during development of chicken brain. J. Biol. Chem. 2010; 285(35), 27265-27278. Přejít k původnímu zdroji... Přejít na PubMed...
  34. Dobbertin A., Hrabovská A., Dembele K., Camp S., Taylor P., Krejci E., Bernard V. Targeting of acetylcholinesterase in neurons in vivo: A dual processing function for the Proline-Rich Membrane Anchor subunit and the attachment domain on the catalytic subunit. J. Neurosci. 2009; 18729(14), 4519-4530. Přejít k původnímu zdroji... Přejít na PubMed...
  35. García-Ayllón M. S., Campanari M. L., Montenegro M. F., Cuchillo Ibánez I., Belbin O., Lleó A., Tsim K., Vidal C. J., Sáez-Valero J. Presenilin-1 influences processing of the acetylcholinesterase membrane anchor PRiMA. Neurobiol. Aging. 2014; 35(7), 1526-1536. Přejít k původnímu zdroji... Přejít na PubMed...
  36. Dvir H., Harel M., Bon S., Liu W. Q., Vidal M., Barbay C., Sussman J. l., Massoulié J. Silman I. The synaptic acetylcholinesterase tetramer assembles around a polyproline II helix. EMBO J. 2004; 23(22), 4394-4405. Přejít k původnímu zdroji... Přejít na PubMed...
  37. Simon S.,Krejci E., Massoulié J. A four-to-one association between peptide motifs: four C-terminal domains from cholinesterase assemble with one proline-rich attachment domain (PRAD) in the secretory pathway. EMBO J. 1988; 7(10), 2983-2993.
  38. Xie W., Wilder P. J., Stribley J. A., Chatonnet A., Rizzino A., Taylor P., Hinrichs S. H., Lockridge O. Knockout of the acetylcholinesterase allele in the mouse. Chem. Biol. Interact. 1999; 119-120, 289-299. Přejít k původnímu zdroji... Přejít na PubMed...
  39. Xie W., Stribley J. A., Chatonnet A., Wilder P. J., Rizzino A., McComb R. D., Taylor P., Hinrichs S. H., Lockridge O. Postnatal developmental delay and supersensitivity to organophosphate in gene-targeted mice lacking acetylcholinesterase. J. Pharmacol. Exp. Ther. 2000; 293(3), 896-902. Přejít k původnímu zdroji...
  40. Sun M., Lee C. J., Shin H. S. Reduced nicotinic receptor function in sympathetic ganglia is responsible for hypothermia in the acetylcholinesterase knockout mouse. J. Physiol. 2007; 578(Pt 3), 751-764. Přejít k původnímu zdroji... Přejít na PubMed...
  41. Li B., Stribley J. A., Ticu A., Xie W., Schopfer L. M., Hammond P., Brimijoin S., Hinrichs S. H., Lockridge O. Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse. J. Neurochem. 2000; 75(3), 1320-1231. Přejít k původnímu zdroji... Přejít na PubMed...
  42. Adler M., Manley H. A., Purcell A. L., Deshpande S. S., Hamilton T. A., Kan R. K., Oyler G. Lockridge O., Duysen E. G., Sheridan R. E. Reduced acetylcholine receptor density, morphological remodeling, and butyrylcholinesterase activity can sustain muscle function in acetylcholinesterase knockout mice. Muscle nerve. 2004; 30(3), 317-327. Přejít k původnímu zdroji... Přejít na PubMed...
  43. Hartmann J., Kiewert C., Duysen E. G., Lockridge O., Greig N. H., Klein J. Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. J. Neurochem. 2007; 100(5), 1421-1429. Přejít k původnímu zdroji... Přejít na PubMed...
  44. Duysen E.G., Li B., Xie W., Schopfer L. M., Anderson R. S., Broomfield C. A., Lockridge O. Evidence for nonacetylcholinesterase targets of organophosphorus nerve agent: supersensitivity of acetylcholinesterase konckout mouse to VX lethality. J. Pharmacol. Exp. Ther. 2001; 299(2), 528-535. Přejít k původnímu zdroji...
  45. Duysen E.G., Stribley J. A., Fry D. L., Hinrichs S. H., Lockridge O. Rescue of the acetylcholinesterase knockout mouse by feeding a liquid diet; phenotype of the adult acetylcholinesterase deficient mouse. Brain Res. Dev. Brain Res. 2002; 137(1), 43-54. Přejít k původnímu zdroji... Přejít na PubMed...
  46. Gupta R. C., Patterson G. T., Dettbarn W. D. Mechanizms of toxicity and tolerance to diisopropylphosphorofluoridate at the neuromuscular junction of the rat. Toxicol. Appl. Pharmacol. 1986; 84(3), 541-550. Přejít k původnímu zdroji... Přejít na PubMed...
  47. Girard E., Bernard V., Camp S., Taylor P., Krejci E., Molgó J. Remodeling of the neuromuscular junction in mice with deleted exons 5 and 6 of acetylcholinesterase. J. Mol. Neurosci. 2006; 30(1-2), 99-100. Přejít k původnímu zdroji... Přejít na PubMed...
  48. Blondet B., Carpentier G., Ferry A., Chatonnet A., Courty J. Localization fo butyrylcholinesterase at the neuromuscular junction of normal and acetylcholinesterase knockout mice. J. Histochem. Cytochem. 2010; 58(12), 1075-1082. Přejít k původnímu zdroji... Přejít na PubMed...
  49. Hrabovská A., Duysen E. G., Sanders J. D., Murrin L. C., Lockridge O. Delivery of human acetylcholinesterase by adeno-associated virus to the acetylcholinesterase knockout mouse. Chem. Biol. Interact. 2005; 157-158, 71-78. Přejít k původnímu zdroji... Přejít na PubMed...
  50. Mesulam M.M., Guillozet A., Shaw p., Levey A., Duysen E. G., Lockridge O. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience 2002; 110(4), 627-639. Přejít k původnímu zdroji... Přejít na PubMed...
  51. Rice S. G., Nowak L., Duysen E. G., Lockridge O., Lahiri D. K., Reyes P. F. Neuropathological and immunochemical studies of brain parenchyma in acetylcholinesterase knockout mice: implications in Alzheimer's disease. J. Alzheimers Dis. 2007; 11(4), 481-489. Přejít k původnímu zdroji... Přejít na PubMed...
  52. Volpicelli-Daley L. A., Duysen E. G., Lockridge O., Levey A. I. Altered hippocampal muscarinic receptors on acetylcholinesterase-deficient mice. Ann. Neurol. 2003; 53(6), 788-796. Přejít k původnímu zdroji... Přejít na PubMed...
  53. Volpicelli-Daley L. A., Hrabovská A., Duysen E. G., Ferguson S. M., Blakely R. D., Lockridge O., Levey A. I. Altered striatal function and muscarinic cholinergic receptors in acetylcholinesterase knockout mice. Mol. Pharmacol. 2003; 64(6), 1309-1316. Přejít k původnímu zdroji... Přejít na PubMed...
  54. Bernard V., Brana C., Liste I., Lockridge O., Bloch B. Dramatic depletion of cell surface m2 muscarinic receptor due to limited delivery from intracytoplasmic stores in neurons of acetylcholinesterase-deficient mice. Mol. Cell Neurosci. 2003; 23(1), 121-133. Přejít k původnímu zdroji... Přejít na PubMed...
  55. Li B., Duysen E. G., Volpicelli-Daley L. A., Levey A. I. Lockridge O. Regulation of muscarinic acetylcholine receptor function in acetylcholinesterase knockout mice. Pharmacol. Biochem. Behav. 2003; 74(4), 977-986. Přejít k původnímu zdroji... Přejít na PubMed...
  56. Chatonnet F., Boudinot E., Chatonnet A., Taysse L., Daulon S., Champagnat J., Foutz A. S. Respiratory survival mechanisms in acetylcholinesterase knockout mouse. Eur. J. Neurosci. 2003; 18(6), 1419-1427. Přejít k původnímu zdroji... Přejít na PubMed...
  57. Hrabovská A., Farár V., Bernard V., Duysen E. G., Brabec J., Lockridge O., Mysliveček J. Drastic decrease in dopaminergic receptor levels in the striatum of acetylcholinesterase knock-out mouse. Chem. Biol. Interact. 2010; 183, 1, 194-201. Přejít k původnímu zdroji... Přejít na PubMed...
  58. Mysliveček J., Duysen E. G., Lockridge O. Adaptation to excess acetylcholine by downregulation of adrenoceptors and muscarinic receptors in lungs of acetylcholinesterase knockout mice. Naunyn Schmiedebergs Arch. Pharmacol. 2007; 376(1-2), 83-92. Přejít k původnímu zdroji... Přejít na PubMed...
  59. Farar V., Mohr F., Legrand M., Lamotte d'Inchamps B., Leroy J., Abitbol M., Bernard V., Baud F., Fournet V., Houze P., Klein J., Plaud B., Tuma J., Zimmermann M., Acher P., Hrabovská A., Mysliveček J., Krejci E. Near-complete adaptation of the PRiMA knockout to the lack of central acetylcholinesterase. J. Neurochem. 2012; 122(5), 1065-1080. Přejít k původnímu zdroji... Přejít na PubMed...
  60. Camp S., Zhang L., Marquez M., de la Torre B., Long J. M., Bucht G., Taylor P. Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion. Chem. Biol. Interact. 2005; 157-158, 79-86. Přejít k původnímu zdroji... Přejít na PubMed...
  61. Li B., Duysen E. G., Saunders T. L., Lockridge O. Production of the butyrylcholinesterase knockout mouse. J. Mol. Neurosci. 2006; 30(1-2), 193-195. Přejít k původnímu zdroji... Přejít na PubMed...
  62. Duysen E. G., Li B., Darvesh S., Lockridge O. Sensitivity of butyrylcholinesterase knockout mice to (-)-huperzine A and donepezil suggest humans with butyrylcholinesterase deficiency may not tolerate these Alzheimer's disease drugs and indicates butyrylcholnesterase function in neurotransmission. Toxicology 2007; 233(1-2), 60-69. Přejít k původnímu zdroji... Přejít na PubMed...
  63. Li B., Duysen E. G., Carlson M., Lockridge O. The butyrylcholinesterase knockout mouse as a model for human butyrylcholinesterase deficiency. J. Pharmacol. Exp. Ther. 2008; 324(3), 1146-1154. Přejít k původnímu zdroji... Přejít na PubMed...
  64. Li B., Duysen E. G., Lockridge O. The butyrylcholinesterase knockout mouse is obese on a high-fat diet. Chem. Biol. Interact. 2008; 175(1-3), 88-91. Přejít k původnímu zdroji... Přejít na PubMed...
  65. Rahimi Z., Ahmadi R., Vaisi-Raygani A., Rahimi Z., Bahrehmand F., Parsian A. Butyrylcholinesterase (BChE) activity is associated with the risk of preeclampsia: influence on lipid and lipoprotein metabolism and oxidative stress. J. Matern. Fetal Neonatal Med. 2013; 26(16), 1590-1594. Přejít k původnímu zdroji... Přejít na PubMed...
  66. Vallianou N. G., Evangelopoulos A. A., Bountziouka V., Bonou M. S., Katsagoni C., Vogiatzakis E. D., Avgerinos P. C., Barbetseas J., Panagiotakos D. B. Association of butyrylcholinesterase with cardiometabolic risk factors among apparently healthy adults. J. Cardiovasc. Med. (Hagerstown, Md.). 2014; 15(5), 377-383. Přejít k původnímu zdroji... Přejít na PubMed...
  67. Abbott C. A., Mackness M. I., Kumar S., Olukoga A. O., Gordon C., Arrol S., Bhatnagar D., Boulton A. J., Durrington P. N. Relationship between serum butyrylcholinesterase activity, hypertriglyceridaemia and insulin sensitivity in diabetes mellitus. Clin. Sci. (Lond.) 1993; 85(1), 77-81. Přejít k původnímu zdroji... Přejít na PubMed...
  68. Johnson G., Moore S. W. Why has butyrylcholinesterase been retained? Structural and functional diversification in a duplicated gene. Neurochem. Int. 2012; 61(5), 783-797. Přejít k původnímu zdroji... Přejít na PubMed...
  69. Lockridge O. Genetic variants of human serum cholinesterase influence metabolism of the muscle relaxant succinylcholine. Pharmacol. Ther. 1990; 47(1), 35-60. Přejít k původnímu zdroji... Přejít na PubMed...
  70. Hoffman R. S., Henry G. C., Wax P. M., Weisman R. S., Howland M. A., Goldfrank L. R. Decreased plasma cholinesterase activity enhances cocaine toxicity in mice. J. Pharmacol. Exp. Ther. 1992; 263(2), 698-702. Přejít k původnímu zdroji...
  71. Duysen E. G., Li B., Carlson M., Li Y. F., Wieseler S., Hinrichs S. H., Lockridge O. Increased hepatotoxicity and cardiac fibrosis in cocaine treated butyrylcholinesterase knockout mice. Basic Clin. Pharmacol. Toxicol. 2008; 103(6), 514-521. Přejít k původnímu zdroji... Přejít na PubMed...
  72. Duysen E. G., Lockridge O. Prolonged toxic effects after cocaine challenge in butyrylcholinesterase/plasma carboxylesterase double knockout mice: a model for butyrylcholinesterase-defficent humans. Drug Metab. Dispos. 2011; 39(8), 1321-1323. Přejít k původnímu zdroji... Přejít na PubMed...
  73. Camp S., Zhang L., Krejci E., Dobbertin A., Bernard V., Girard E., Duysen E. G., Lockridge O., De Jaco A., Taylor P. Contributions of selective knockout studies to understanding cholinesterase disposition and function. Chem. Biol. Interact. 2010; 187(1-3), 72-77. Přejít k původnímu zdroji... Přejít na PubMed...
  74. Camp S., De Jaco A., Zhang L., Marquez M., De la Torre B., Taylor P. Acetylcholinesterase expression in muscle is specifically controlled by a promoter-selective enhancesome in the first intron. J. Neurosci. 2008; 28(10), 2459-2470. Přejít k původnímu zdroji... Přejít na PubMed...
  75. Girard E., Bernard V., Camp S., Taylor P., Krejci E., Molgó J. Remodeling of the neuromuscular junction in mice with deleted exons 5 and 6 of acetylcholinesterase. J. Mol. Neurosci. 2006; 30(1-2), 99-100. Přejít k původnímu zdroji... Přejít na PubMed...
  76. Boudinot E., Bernard V., Camp S., Taylor P., Champagnat J., Krejci E., Foutaz A. S. Influence of differential expression of acetylcholinesterase in brain and muscle on respiration. Respir. Physiol. Neurobiol. 2009; 165(1), 40-48. Přejít k původnímu zdroji... Přejít na PubMed...
  77. Fuentes M. E., Taylor P. Control of acetylcholinesterase gene expression during myogenesis. Neuron 1993; 10(4), 679-687. Přejít k původnímu zdroji... Přejít na PubMed...
  78. Boudreau-Lariviére C., Parry D. J., Jasmin B. J. Myotubes originating from single fast and slow satellite cells display similar patterns of AChE expression. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000; 278(1), 140-148. Přejít k původnímu zdroji... Přejít na PubMed...
  79. Angus L. M., Chan R. Y., Jasmin B. J. Role of intronic E- and N-box motifs in the transcriptional induction of the acetylcholinesterase gene during myogenic differentiation. J. Biol. Chem. 2001; 276(20), 17603-17609. Přejít k původnímu zdroji... Přejít na PubMed...
  80. Bernard V., Girard E., Hrabovská A., Camp S., Taylor P., Plaud B., Krejci E. Distinct localization of collagen Q and PRiMA forms of acetylcholinesterase at the neuromuscular junction. Mol. Cell. Neurosci. 2011; 46(1), 272-281. Přejít k původnímu zdroji... Přejít na PubMed...
  81. Minic J., Molgó J., Karlsson E., Krejci E. Regulation of acetylcholine released by muscarinic receptors at the mouse neuromuscular junction depends on the activity of acetylcholinesterase. Eur. J. Neurosci. 2002; 15(2), 439-448. Přejít k původnímu zdroji... Přejít na PubMed...
  82. Nguyen-Huu T., Dobbertin A., Barbier J., Minic J., Krejci E., DUvaldestin P., Molgó J. Cholinesterases and the resistance of the mouse diaphragm to the effect of tubocurarine. Anesthesiology 2005; 103(4), 788-795. Přejít k původnímu zdroji... Přejít na PubMed...
  83. Ohno K., Engel A. G., Brengman J. M., Shen X. M., Heidenreich F., Vincent A., Milone M., Tan E., Demirci M., Walsh P., Nakano S., Akiguchi I. The spectrum of mutations causing end-plate acetylcholinesterase deficiency. Ann. Neurol. 2000; 47(2), 162-170. Přejít k původnímu zdroji...
  84. Engel A. G., Ohno K., Shen X. M., Sine S. M., Congenital myasthenic syndromes: multiple molecular targets at the neuromuscular junction. Ann. N. Y. Acad. Sci. 2003; 998, 138-160. Přejít k původnímu zdroji... Přejít na PubMed...
  85. Ohno K., Ito M., Kawakami Y., Ohtsuka K. Collagen Q is a key player for developing rational therapy for congenital myasthenia and for dissecting the mechanisms of anti-MuSK myasthenia gravis. J. Mol. Neurosci. 2014; 53(3), 359-361. Přejít k původnímu zdroji... Přejít na PubMed...
  86. Farar V., Hrabovská A., Krejci E., Mysliveček J. Developmental adaptation of central nervous system to extremely high acetylcholine levels. PLoS One. 2013; 8(7), e68265. Přejít k původnímu zdroji... Přejít na PubMed...




Česká a slovenská farmacie

Vážená paní, pane,
upozorňujeme Vás, že webové stránky, na které hodláte vstoupit, nejsou určeny široké veřejnosti, neboť obsahují odborné informace o léčivých přípravcích, včetně reklamních sdělení, vztahující se k léčivým přípravkům. Tyto informace a sdělení jsou určena výhradně odborníkům dle §2a zákona č.40/1995 Sb., tedy osobám oprávněným léčivé přípravky předepisovat nebo vydávat (dále jen odborník).
Vezměte v potaz, že nejste-li odborník, vystavujete se riziku ohrožení svého zdraví, popřípadě i zdraví dalších osob, pokud byste získané informace nesprávně pochopil(a) či interpretoval(a), a to zejména reklamní sdělení, která mohou být součástí těchto stránek, či je využil(a) pro stanovení vlastní diagnózy nebo léčebného postupu, ať už ve vztahu k sobě osobně nebo ve vztahu k dalším osobám.

Prohlašuji:

  1. že jsem se s výše uvedeným poučením seznámil(a),
  2. že jsem odborníkem ve smyslu zákona č.40/1995 Sb. o regulaci reklamy v platném znění a jsem si vědom(a) rizik, kterým by se jiná osoba než odborník vstupem na tyto stránky vystavovala.


Ne

Ano

Pokud vaše prohlášení není pravdivé, upozorňujeme Vás,
že se vystavujete riziku ohrožení svého zdraví, popřípadě i zdraví dalších osob.