JOURNAL OF THE CZECH PHARMACEUTICAL SOCIETY AND THE SLOVAK PHARMACEUTICAL SOCIETY

Čes. slov. farm. 2023, 72(6):267-275 | DOI: 10.5817/CSF2023-6-267

Brief insight into the in silico properties, structure-activity relationships and biotransformation of fruquintinib, an anticancer drug of a new generation containing a privileged benzofuran scaffold

Dominika Nádaská1, Lucia Hudecová2, Gustáv Kováč2, Ivan Malík1,2,*
1 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
2 Institute of Chemistry, Clinical Biochemistry and Laboratory Medicine Faculty of Medicine, Slovak Medical University in Bratislava, Slovak Republic

Current trends in drug design notably consider so-called privileged scaffolds as the core structural fragments with decisive impact on affinity to properly chosen biological targets, potency, selectivity and toxicological characteristics of drugs and prospective drug candidates.

Fruquintinib (

1) is a novel synthetic selective inhibitor of vascular endothelial growth factor receptor (VEGFR) isoforms, i.e., VEGFR-1, VEGFR-2 and VEGFR-3. The therapeutic agent (

1) consists of a flat bicyclic heteroaromatic ring, in which two nitrogens are suitablyincorporated, a core bicyclic heteroaromatic ring - privileged (substituted) benzofuran scaffold, and a pair of hydrogen bond (H-bond) donor and acceptor group, i.e., amide functional moiety. Fruquintinib (1) was first approved in China for the treatment of metastatic colorectal cancer, a severe malignant disease with a high mortality rate. The review article offered a brief insight into the topic of privileged structures, their drug-like ranges of several parameters, pharmacodynamic characteristics of fruquintinib (1) and various in silico descriptors characterizing drug's structural and physicochemical properties (molecular weight, number of heavy atoms, number of aromatic heavy atoms, fraction of sp3 C-atoms, number of H-bond acceptors, number of H-bond donors, total polar surface area, molar refractivity, molecular volume as well as parameters of lipophilicity and solubility). Some of these descriptors were related to pharmacokinetics and distribution of fruquintinib (1), and, in addition, might help predict its ability to cross passively the blood-brain barrier (BBB). Moreover, a possible connection between the induction potential on cytochrome P450 isoenzymes (CYP1A2 and CYP3A4) and passive transport of a given drug into the central nervous system via BBB was investigated. Current clinical experience and future directions regarding of fruquintinib (1) were also briefly outlined.

Keywords: privileged scaffold; fruquintinib; in silico properties; structure-activity relationships; pharmacokinetics

Received: September 29, 2023; Accepted: October 30, 2023; Published: June 1, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Nádaská D, Hudecová L, Kováč G, Malík I. Brief insight into the in silico properties, structure-activity relationships and biotransformation of fruquintinib, an anticancer drug of a new generation containing a privileged benzofuran scaffold. Čes. slov. farm. 2023;72(6):267-275. doi: 10.5817/CSF2023-6-267.
Download citation

References

  1. Zhao H., Dietrich J. Privileged scaffolds in lead generation. Expert Opin. Drug. Discov. 2015; 10, 781-790. doi:10.1517/17460441.2015.1041496 Go to original source... Go to PubMed...
  2. Evans B. E., Rittle K. E., Bock M. G., DiPardo R. M., Freidinger R. M., Whitter W. L., Lundell G. F., Veber D. F., Anderson P. S., Chang R. S. L., Lotti V. J., Cerino D. J., Chen T. B., Kling P. J., Kunkel K. A., Springer J. P., Hirshfield J. Methods for drug discovery: development of potent,selective, orally effective cholecystin antagonists. J. Med. Chem. 1988; 31, 2235-2246. doi: 10.1021/jm00120a002 Go to original source... Go to PubMed...
  3. Kourounakis A. P., Xanthopoulos D., Tzara A. Morpholine as a privileged structure: A review on the medicinal chemistry and pharmacological activity of morpholine containing bioactive molecules. Med. Res. Rev. 2020; 40, 709-752. doi: 10.1002/med.21634 Go to original source... Go to PubMed...
  4. Datusalia A. K., Khatik G. L. Thiazole heterocycle: A privileged scaffold for drug design and discovery. Curr. Drug Discov. Technol.2018; 15, 162. doi: 10.2174/157016381503180620153423 Go to original source... Go to PubMed...
  5. Gharat R., Prabhu A., Khambete M. P. Potential of triazines in Alzheimer's disease: A versatile privileged scaffold. Arch. Pharm. (Weinheim) 2022; 355, art. no. e2100388 (12 pp.). doi: 10.1002/ardp.202100388 Go to original source... Go to PubMed...
  6. Maclean D., Baldwin J. J., Ivanov V. T., Kato Y., Shaw A., Schenider P., Gordon E. M. Glossary of terms used in combinatorial chemistry (technical report). J. Comb. Chem. 2000; 2, 562-578. doi: 10.1021/cc000071u Go to original source... Go to PubMed...
  7. Horton D. A., Bourne G. T., Smythe M. L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures.Chem. Rev. 2003; 103, 893-930. doi: 10.1021/cr020033s Go to original source... Go to PubMed...
  8. Costantino L., Barlocco D. Privileged structures as leads in medicinal chemistry. Curr. Med. Chem. 2006; 13, 6585. doi: 10.2174/092986706775197999 Go to original source...
  9. Rusinov V. L., Charushin V. N., Chupakhin O. N. Biologically active azolo-1,2,4-triazines and azolopyrimidines. Russ. Chem. Bull. 2018; 67, 573-599. doi: 10.1007/s11172-018-2113-8 Go to original source...
  10. Voinkov E. K., Drokin R. A., Fedotov V. V., Butorin I. I., Savateev K. V., Lyapustin D. N., Gazizov D. A., Gorbunov E. B., Slepukhin P. A., Gerasimova N. A., Evstigneeva N. P., Zilberberg N. V., Kungurov N. V., Ulomsky E. N., Rusinov V. L. Azolo[5,1-c][1,2,4]triazines and azoloazapurines: Synthesis, antimicrobial activity and in silico studies. ChemistrySelect 2022; 7, art. no. e202104253 (8 pp.). doi: 10.1002/slct.202104253 Go to original source...
  11. Savateev K. V., Ulomsky E. N., Butorin I. I., Charushin V. N., Rusinov V. L., Chupakhin O. N. Azoloazines as A2a receptor antagonists.Structure-activity relationship. Russ. Chem. Rev. 2018; 87, 636-669. doi: 10.1070/RCR4792 Go to original source...
  12. Han Ch., Zhang J., Zheng M., Xiao Y., Li Y., Liu G. An integrated drug-likeness study for bicyclic privileged structures: from physicochemical properties to in vitro ADME properties. Mol. Divers. 2011; 15, 857-876. doi: 10.1007/s11030-011-9317-2 Go to original source... Go to PubMed...
  13. Hubatsch I., Ragnarsson E. G. E., Artursson P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat. Protoc. 2007; 2, 2111-2119. doi: 10.1038/nprot.2007.303 Go to original source... Go to PubMed...
  14. Jakopin Ž. 2-Aminothiazoles in drug discovery: Privileged structures or toxicophores? Chem. Biol. Interact. 2020; 330, art. no. 109244 (8 pp.). doi: 10.1016/j.cbi.2020.109244 Go to original source... Go to PubMed...
  15. Atmaram U. A., Roopan S. M. Biological activity of oxadiazole and thiadiazole derivatives. Appl. Microbiol. Biotechnol. 2022; 106, 3489-3505. doi: 10.1007/s00253-022-11969-0 Go to original source... Go to PubMed...
  16. He M., Fan M., Peng Z., Wang G. An overview of hydroxypyranone and hydroxypyridinone as privileged scaffolds for novel drug discovery. Eur. J. Med. Chem. 2021; 221, art. no. 113546 (29 pp.). doi: 10.1016/j.ejmech.2021.113546 Go to original source... Go to PubMed...
  17. Rakesh K. P., Shantharam C. S., Sridhara M. B., Manukumar H. M., Qin H.-L. Benzisoxazole: a privileged scaffold for medicinal chemistry. Med. Chem. Commun. 2017; 8, 2023-2039. doi: 10.1039/c7md00449d Go to original source... Go to PubMed...
  18. Saroha B., Kumar G., Kumari M., Kaur R., Raghav N., Sharma P. K., Kumar N., Kumar S. A decennary update on diverse heterocycles and their intermediates as privileged scaffolds for cathepsin B inhibition. Int. J. Biol. Macromol. 2022; 222 (Part B),2270-2308. doi: 10.1016/j.ijbiomac.2022.10.017 Go to original source... Go to PubMed...
  19. Avula S. K., Das B., Csuk R., Al-Harrasi A. Naturally occurring O-heterocycles as anticancer agents. Anticancer Agents Med.Chem. 2022; 22, 3208-3218. doi: 10.2174/1871520621666211108091444 Go to original source... Go to PubMed...
  20. Pairas G. N., Perperopoulou F., Tsoungas P. G., Varvounis G. The isoxazole ring and its N-oxide: A privileged core structure in neuropsychiatric therapeutics. ChemMedChem. 2017; 12, 408-419. doi: 10.1002/cmdc.201700023 Go to original source... Go to PubMed...
  21. Wang Xi., Wang Xu., Zhao Y., Zhang X. Two previously undescribed benzofuran derivatives from the flowers of Callistephuschinensis. Phytochem. Lett. 2022; 51, 145-148. doi: 10.1016/j.phytol.2022.08.012 Go to original source...
  22. Abu-Hashem A. A., Hussein H. A. R., Aly A. S., Gouda M. A. Reactivity of benzofuran derivatives. Synth. Commun. 2014; 44, 2899-2920. doi: 10.1080/00397911.2014.907425 Go to original source...
  23. Abbas A. A., Dawood K. M. Anticancer therapeutic potential of benzofuran scaffolds. RSC Adv. 2023; 13, 11096-11120. doi: 10.1039/d3ra01383a Go to original source... Go to PubMed...
  24. Fuloria Sh., Sekar M., Khattulanuar F. S., Gan S. H., Rani N. N. I. M., Ravi S., Subramaniyan V., Jeyabalan S., Begum M. Y., Chidambaram K., Sathasivam K. V., Safi Sh. Z., Wu Y. S., Nordin R., Maziz M. N. H., Kumarasamy V., Lum P. T., Fuloria N. K.Chemistry, biosynthesis and pharmacology of viniferin: Potential resveratrol-derived molecules for new drug discovery, development and therapy. Molecules 2022; 27, art. no. 5072 (33 pp.). doi: 10.3390/molecules27165072 Go to original source... Go to PubMed...
  25. Khanam H., Shamsuzzaman. Bioactive benzofuran derivatives: A review. Eur. J. Med. Chem. 2015; 97, 483-504. doi:10.1016/j.ejmech.2014.11.039 Go to original source... Go to PubMed...
  26. Chiummiento L., D'Orsi R., Funicello M., Lupattelli P. Last decade of unconventional methodologies for the synthesis of substituted benzofurans. Molecules 2020; 25, art. no. 2327 (52 pp.). doi: 10.3390/molecules25102327 Go to original source... Go to PubMed...
  27. Modell A. E., Blosser S. L., Arora P. S. Systematic targeting of protein-protein interactions. Trends Pharmacol. Sci. 2016; 37, 702-713. doi: 10.1016/j.tips.2016.05.008 Go to original source... Go to PubMed...
  28. Farhat J., Alzyoud L., Alwahsh M., Al-Omari B. Structure-activity relationship of benzofuran derivatives with potential anticancer activity. Cancers (Basel) 2022; 14, art. no. 2196 (22 pp.). doi: 10.3390/cancers14092196 Go to original source... Go to PubMed...
  29. Dawood K. M. Benzofuran derivatives: a patent review. Expert Opin. Ther. Pat. 2013; 23, 1133-1156. doi:10.1517/13543776.2013.801455 Go to original source... Go to PubMed...
  30. Xu Zh., Zhao Sh., Lv Z., Feng L., Wang Y., Zhang F., Bai L., Deng J. Benzofuran derivatives and their anti-tubercular, antibacterial activities. Eur. J. Med. Chem. 2019; 162, 266-276. doi: 10.1016/j.ejmech.2018.11.025 Go to original source... Go to PubMed...
  31. Nevagi R. J., Dighe S. N., Dighe S. N. Biological and medicinal significance of benzofuran. Eur. J. Med. Chem. 2015; 97, 561-581. doi: 10.1016/j.ejmech.2014.10.085 Go to original source... Go to PubMed...
  32. Ahmad A., Nawaz M. I. Molecular mechanism of VEGF and its role in pathological angiogenesis. J. Cell. Biochem. 2022; 123, 1938-1965. doi: 10.1002/jcb.30344 Go to original source... Go to PubMed...
  33. Malekan M., Ebrahimzadeh M. A. Vascular endothelial growth factor receptors [VEGFR] as target in breast cancer treatment: Current status in preclinical and clinical studies and future directions. Curr. Top. Med. Chem. 2022; 22, 891-920. doi: 10.2174/1568026622666220308161710 Go to original source... Go to PubMed...
  34. Olsson A.-K., Dimberg A., Kreuger J., Claesson-Welsh L. VEGF receptor signalling - in control of vascular function. Nat. Rev. Mol. Cell Biol. 2006; 7, 359-371. doi: 10.1038/nrm1911 Go to original source... Go to PubMed...
  35. Mabeta P., Steenkamp V. The VEGF/VEGFR axis revisited: Implications for cancer therapy. Int. J. Mol. Sci. 2022; 23, art. no. 15585 (14 pp.). doi: 10.3390/ijms232415585 Go to original source... Go to PubMed...
  36. Zhang Y., Zou J.-Y., Wang Zh., Wang Y. Fruquintinib: a novel antivascular endothelial growth factor receptor tyrosine kinase inhibitor for the treatment of metastatic colorectal cancer. Cancer Manag. Res. 2019; 11, 7787-7803. doi: 10.2147/CMAR.S215533 Go to original source... Go to PubMed...
  37. Li X., Zhou J., Wang X., Li Ch., Ma Z., Wan Q., Peng F. New advances in the research of clinical treatment and novel anticanceragents in tumor angiogenesis. Biomed. Pharmacother. 2023; 163, art. no. 114806 (16 pp.). doi: 10.1016/j.biopha.2023.114806 Go to original source... Go to PubMed...
  38. Sun Q., Zhou J., Zhang Zh., Guo M., Liang J., Zhou F., Long J., Zhang W., Yin F., Cai H., Yang H., Zhang W., Gu Y., Ni L., Sai Y., Cui Y., Zhang M., Hong M., Sun J., Yang Zh., Qing W., Su W., Ren Y. Discovery of fruquintinib, a potent and highly selective small molecule inhibitor of VEGFR 1, 2, 3 tyrosine kinases for cancer therapy. Cancer Biol. Ther. 2014; 15, 1635-1645. doi:10.4161/15384047.2014.964087 Go to original source... Go to PubMed...
  39. Chen Zh., Jiang L. The clinical application of fruquintinib on colorectal cancer. Expert Rev. Clin. Pharmacol. 2019; 12, 713-721. doi:10.1080/17512433.2019.1630272 Go to original source... Go to PubMed...
  40. Shirley M. Fruquintinib: First global approval. Drugs 2018; 78, 1757-1761. doi: 10.1007/s40265-018-0998-z Go to original source... Go to PubMed...
  41. Lavacchi D., Roviello G., Guidolin A., Romano S., Venturini J., Caliman E., Vannini A., Giommoni E., Pellegrini E., Brugia M., Pillozzi S., Antonuzzo L. Evaluation of fruquintinib in the continuum of care of patients with colorectal cancer. Int. J. Mol. Sci. 2023; 24, art. no. 5840 (12 pp.). doi: 10.3390/ijms24065840 Go to original source... Go to PubMed...
  42. Modi S. J., Kulkarni V. K. Exploration of structural requirements for the inhibition of VEGFR-2 tyrosine kinase: Binding site analysis of type II, 'DFG-out' inhibitors. J. Biomol. Struct. Dyn. 2022; 40, 5712-5727. doi: 10.1080/07391102.2021.1872417 Go to original source... Go to PubMed...
  43. Daina A., Michielin O., Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017; 7, art. no. 42717 (13 pp.). doi: 10.1038/srep42717 Go to original source... Go to PubMed...
  44. Moriguchi I., Hirono Sh., Liu Q., Nakagome I., Matsushita Y. Simple method of calculating octanol / water partition coefficient.Chem. Pharm. Bull. 1992; 40, 127-130. doi: 10.1248/cpb.40.127 Go to original source...
  45. Moriguchi I., Hirono Sh., Nakagome I., Hirano H. Comparison of reliability of log P values for drugs calculated by several methods. Chem. Pharm. Bull. 1994; 42, 976-978. doi: 10.1248/cpb.42.976 Go to original source...
  46. Lipinski Ch. A., Lombardo F., Dominy D. W., Feeney P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001; 46, 3-26. doi: 10.1016/s0169-409x(00)00129-0 Go to original source... Go to PubMed...
  47. PerkinElmer. https://www.perkinelmer.com/analytical-and-enterprise-solutions.html (accessed on: September 24, 2023)
  48. Molinspiration Cheminformatics. https://www.molinspiration.com/cgi-bin/properties (accessed on: September 24, 2023)
  49. Ali J., Camilleri P., Brown M. B., Hutt A. J., Kirton S. B. In silico prediction of aqueous solubility using simple QSPR models: theimportance of phenol and phenol-like moieties. J. Chem. Inf. Model. 2012; 52, 2950-2957. doi: 10.1021/ci300447c Go to original source... Go to PubMed...
  50. Silicos-IT. https://www.silicos-it.be/ (accessed on: September 24, 2023)
  51. Wang X., Bove A. M., Simone G., Ma B. Molecular bases of VEGFR-2-mediated physiological function and pathological role. Front. Cell Dev. Biol. 2020; 8, art. no. 599281 (12 pp.). doi: 10.3389/fcell.2020.599281 Go to original source... Go to PubMed...
  52. Peng F.-W., Liu D.-K., Zhang Q.-W., Xu Y.-G., Shi L. VE-GFR-2 inhibitors and the therapeutic applications thereof: a patent review (2012-2016). Expert Opin. Ther. Pat. 2017; 27, 987-1004. doi: 10.1080/13543776.2017.1344215 Go to original source... Go to PubMed...
  53. Lipinski Ch. A. Leadand drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol. 2004; 1, 337-341. doi: 10.1016/j.ddtec.2004.11.007 Go to original source... Go to PubMed...
  54. Veber D. F., Johnson S. R., Cheng H.-Y., Smith B. R., Ward K. W., Kopple K. D. Molecular properties that influence the oralbioavailability of drug candidates. J. Med. Chem. 2002; 45, 2615-2623. doi: 10.1021/jm020017n Go to original source... Go to PubMed...
  55. Gu Y., Wang J., Li K., Zhang L., Ren H., Guo L., Sai Y., Zhang W., Su W. Preclinical pharmacokinetics and disposition of a novel selective VEGFR inhibitor fruquintinib (HMPL-013) and the prediction of its human pharmacokinetics. Cancer Chemother.Pharmacol. 2014; 74, 95-115. doi: 10.1007/s00280-014-2471-3 Go to original source... Go to PubMed...
  56. Kelder J., Grootenhuis P. D. J., Bayada D. M., Delbressine L. P. C., Ploemen J.-P. Polar molecular surface as a dominatingdeterminant for oral absorption and brain penetration of drugs. Pharm. Res. 1999; 16, 1514-1519. doi: 10.1023/A:1015040217741 Go to original source... Go to PubMed...
  57. van de Waterbeemd H., Camenish G., Folkers G., Chretien J. R., Raevsky O. A. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J. Drug Target. 1998; 6, 151-156. doi: 10.3109/10611869808997889 Go to original source... Go to PubMed...
  58. Levin V. A. Relationship of octanol / water partition coefficient and molecular weight to rat brain capillary permeability. J. Med. Chem.1980; 23, 682-684. doi: 10.1021/jm00180a022 Go to original source... Go to PubMed...
  59. Hansch C., Leo A. J. Substituent constant for correlation analysis in chemistry and biology. New York: Wiley 1979. doi:10.1002/jps.2600690938 Go to original source...
  60. Ghose A. K., Herbertz T., Hudkins R. L., Dorsey B. D., Mallamo J. P. Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem. Neurosci. 2012; 3, 50-68. doi: 10.1021/cn200100h Go to original source... Go to PubMed...
  61. Pajouhesh H., Lenz G. R. Medicinal chemical properties of successful central nervous system drugs. NeuroRx. 2005; 2, 541-553. doi: 10.1602/neurorx.2.4.541 Go to original source... Go to PubMed...
  62. de Klerk D. J., Honeywell R. J., Jansen G., Peters G. J. Transporter and lysosomal mediated (multi)drug resistance to tyrosine kinase inhibitors and potential strategies to overcome resistance. Cancers (Basel) 2018; 10, art. no. 503 (27 pp.). doi: 10.3390/cancers10120503 Go to original source... Go to PubMed...
  63. Fischer H., Gottschlich R., Seelig A. Blood-brain barrier permeation: Molecular parameters governing passive diffusion. J. Membr. Biol. 1998; 165, 201-211. doi: 10.1007/s002329900434 Go to original source... Go to PubMed...
  64. Raub T. J., Lutzke B. S., Andrus P. K., Sawada G. A., Staton B. A. Early preclinical evaluation of brain exposure in support of hitidentification and lead optimization. In: Borchardt R. T., Kerns E. H., Hageman M. J., Thakker D. R., Stevens J. L. (eds.) Optimizing the"Drug-Like" Properties of Leads in Drug Discovery. Biotechnology: Pharmaceutical Aspects, Vol. IV. New York: Springer 2006; 355-410. doi: 10.1007/978-0-387-44961-6_16 Go to original source...
  65. Wang R., Cong D., Bai Y., Zhang W. Case report: long-term sustained remission in a case of metastatic colon cancer with high microsatellite instability and KRAS exon 2 p.G12D mutation treated with fruquintinib after local radiotherapy: a case report and literature review. Front. Pharmacol. 2023; 14, art. no. 1207369 (8 pp.). doi: 10.3389/fphar.2023.1207369 Go to original source... Go to PubMed...
  66. Hoy S. M. Sintilimab: First global approval. Drugs 2019; 79, 341-346. doi: 10.1007/s40265-019-1066-z Go to original source... Go to PubMed...
  67. Guo Y., Zhang W., Ying J., Zhang Y., Pan Y., Qiu W., Fan Q., Xu Q., Ma Y., Wang G., Guo J., Su W., Fan S., Tan P., Wang Y., Luo Y., Zhou H., Li J. Phase 1b/2 trial of fruquintinib plus sintilimab in treating advanced solid tumours: The dose-escalation and metastatic colorectal cancer cohort in the dose-expansion phases. Eur. J. Cancer 2023; 181, 26-37. doi: 10.1016/j.ejca.2022.12.004 Go to original source... Go to PubMed...
  68. Ma Sh., Chen R., Duan L., Li Ch., Yang T., Wang J., Zhao D. Efficacy and safety of toripalimab with fruquintinib in the third-line treatment of refractory advanced metastatic colorectal cancer: results of a single-arm, single-center, prospective, phase II clinical study. J. Gastrointest. Oncol. 2023; 14, 1052-1063. doi: 10.21037/jgo-23-108 Go to original source... Go to PubMed...
  69. Keam S. J. Toripalimab: First global approval. Drugs 2019; 79, 573-578. doi: 10.1007/s40265-019-01076-2 Go to original source... Go to PubMed...
  70. Ding X., Liu Y., Zhang Y., Liang J., Li Q., Hu H., Zhou Y. Efficacy and safety of fruquintinib as thirdor further-line therapy for patients with advanced bone and soft tissue sarcoma: a multicenter retrospective study. Anticancer Drugs 2023; 34, 877-882. doi: 10.1097/CAD.0000000000001482 Go to original source... Go to PubMed...
  71. Zhang P., Yang Y., Gou H., Li Q. Phase II study of fruquintinib as secondor further-line therapy for patients with advanced biliary tract cancer. J. Clin. Oncol. 2023; 41(Suppl), art. no. e16161 (1 pp.). doi: 10.1200/JCO.2023.41.16_suppl.e16161 Go to original source...
  72. Deng Y.-Y., Chen Y.-W., Wang M.-X., Zhu P.-F., Pan Sh.-Y., Jiang D.-Y., Chen Zh.-L., Yang L. Acute aortic dissection caused by fruquintinib for metastatic colorectal cancer-a case report and literature review. Transl. Cancer Res. 2023; 12, 177-185. doi: 10.21037/tcr-22-1872 Go to original source... Go to PubMed...
  73. Zhang N., Xin X., Feng N., Wu D., Zhang J., Yu T., Jiang Q., Gao M., Yang H., Zhao S., Tian Q., Zhang Zh. Combiningfruquintinib and doxorubicin in size-converted nano-drug carriers for tumor therapy. ACS Biomater. Sci. Eng. 2022; 8, 1907-1920. doi:10.1021/acsbiomaterials.1c01606 Go to original source... Go to PubMed...




Czech and Slovak Pharmacy

Madam, Sir,
please be aware that the website on which you intend to enter, not the general public because it contains technical information about medicines, including advertisements relating to medicinal products. This information and communication professionals are solely under §2 of the Act n.40/1995 Coll. Is active persons authorized to prescribe or supply (hereinafter expert).
Take note that if you are not an expert, you run the risk of danger to their health or the health of other persons, if you the obtained information improperly understood or interpreted, and especially advertising which may be part of this site, or whether you used it for self-diagnosis or medical treatment, whether in relation to each other in person or in relation to others.

I declare:

  1. that I have met the above instruction
  2. I'm an expert within the meaning of the Act n.40/1995 Coll. the regulation of advertising, as amended, and I am aware of the risks that would be a person other than the expert input to these sites exhibited


No

Yes

If your statement is not true, please be aware
that brings the risk of danger to their health or the health of others.