Čes. slov. farm. 2023, 72(4):172-183 | DOI: 10.5817/CSF2023-4-172
Effect of digoxin, sodium valproate, and celecoxib on the cerebral cyclooxygenase pathway and neuron-specific enolase under the pentylenetetrazole-induced kindling in mice
- 1 ORGANOSYN LTD, Kyiv, Ukraine
- 2 Department of Pharmacology and Pharmacotherapy, National University of Pharmacy, Kharkiv, Ukraine
- 3 Educational and Scientific Institute of Applied Pharmacy, National University of Pharmacy, Kharkiv, Ukraine
- 4 Department of Clinical Neurology, Psychiatry, and Narcology, School of Medicine, V. N. Karazin, Kharkiv National University, Kharkiv, Ukraine
- 5 Department of Biological Chemistry, Kharkiv National Medical University, Kharkiv, Ukraine
Neuroinflammation plays an important role in the pathogenesis of epilepsy, so it is necessary to clarify the influence of standard antiepileptic drugs as well as adjuvant agents (e.g., cardiac glycoside digoxin, which previously showed a clear anticonvulsant potential) on cyclooxygenase pathway and neuron-specific enolase under the conditions of chronic epileptogenesis. The aim of the article is to determine the effect of digoxin, sodium valproate, and celecoxib per se, as well as the combination of digoxin with sodium valproate on the content of cyclooxygenase 1 and 2 types, prostaglandins E2, F2α, I2, thromboxane B2, 8-isoprostane and neuron-specific enolase in the brain of mice in the pentylenetetrazole-induced kindling model. It was found that only the combination of sodium valproate with digoxin provides a complete protective effect (absence of seizures) and shows the clearest influence on neuroinflammation markers and neuronal damage than monotherapy with each of these drugs and celecoxib, which appeared to be an ineffective anticonvulsant. The obtained results indicate that digoxin is a promising adjuvant drug to classical antiepileptic drugs (mostly sodium valproate) in epilepsy treatment.
Keywords: digoxin; neuron-specific enolase; valproate; cyclooxygenase; pentylenetetrazole-induced kindling; celecoxib
Grants and funding:
This work is a part of the scientific project "Rationale for improving the treatment of multidrug-resistant epilepsy through the combined use of classical anticonvulsant medicines with other drugs" (No. 0120U102460, 2020/2022) supported by the Ministry of Health of Ukraine and carried out at the expense of the State Budget of Ukraine.
Received: October 10, 2022; Accepted: April 26, 2023; Published: April 1, 2023 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Thijs R. D., Surges R., O'Brien T. J., Sander J. W. Epilepsy in adults. Lancet 2019; 393(10172), 689-701.
Go to original source...
Go to PubMed...
- Rosillo-de la Torre A., Luna-Bárcenas G., Orozco-Suárez S., Salgado-Ceballos H., García P., Lazarowski A., Rocha L. Pharmacoresistant epilepsy and nanotechnology. Front. Biosci. (Elite Ed) 2014; 6, 329-340.
- Weaver D. F., Pohlmann-Eden B. Pharmacoresistant epilepsy: Unmet needs in solving the puzzle(s). Epilepsia 2013; 54, 80-85.
Go to original source...
Go to PubMed...
- Tsyvunin V., Shtrygol' S., Shtrygol' D. Digoxin enhances the effect of antiepileptic drugs with different mechanism of action in the pentylenetetrazole-induced seizures in mice. Epilepsy Res. 2020; 167, 106465.
Go to original source...
Go to PubMed...
- Tsyvunin V., Shtrygol' S., Havrylov I., Shtrygol' D. Lowdose digoxin enhances the anticonvulsive potential of carbamazepine and lamotrigine in chemo-induced seizures with different neurochemical mechanisms. ScienceRise, Pharm. Sci. 2021; 6(34), 58-65.
Go to original source...
- Tsyvunin V., Shtrygol' S., Shtrygol' D., Mishchenko M., Kapelka I., Taran A. Digoxin potentiates the anticonvulsant effect of carbamazepine and lamotrigine against experimental seizures in mice. Thai. J. Pharm. Sci. 2021; 45(3), 165-171.
Go to original source...
- Tsyvunin V., Shtrygol' S., Mishchenko M., Shtrygol' D. Digoxin at a sub-cardiotonic dose for the modulation of the anticonvulsive potential of valproate, levetiracetam, and topiramate in experimental primary generalized seizures. Ces.Slov. Farm. 2022; 71, 76-86.
Go to original source...
- Dhir A. An update of cyclooxygenase (COX)-inhibitors in epilepsy disorders. Expert Opin. Investig. Drugs 2019; 28(2), 191-205.
Go to original source...
Go to PubMed...
- Zidar N., Odar K., Glavac D., Jerse M., Zupanc T., Stajer D. Cyclooxygenase in normal human tissues - is COX-1 really a constitutive isoform, and COX-2 an inducible isoform? J. Cell Mol. Med. 2009; 13(9B), 3753-3763.
Go to original source...
Go to PubMed...
- Hoozemans J. J., Rozemuller A. J., Janssen I., De Groot C. J., Veerhuis R., Eikelenboom P. Cyclooxygenase expression in microglia and neurons in Alzheimer's disease and control brain. Acta Neuropathol. 2001; 101(1), 2-8.
Go to original source...
Go to PubMed...
- Wang H., Ye M., Yu L., Wang J., Guo Y., Lei W., Yang J. Hippocampal neuronal cyclooxygenase-2 downstream signaling imbalance in a rat model of chronic aluminium gluconate administration. Behav. Brain. Funct. 2015; 11, 8.
Go to original source...
Go to PubMed...
- Bosetti F., Sang-Ho Choi Rethinking the role of cyclooxygenase-1 in neuroinflammation: More than homeostasis. Cell Cycle 2010; 9(15), 2919-2920.
Go to original source...
Go to PubMed...
- Yermakova A., O'Banion M. K. Cyclooxygenases in the central nervous system: implications for treatment of neurological disorders. Curr. Pharm. Des. 2000; 6(17), 1755-1776.
Go to original source...
Go to PubMed...
- Bazan N. G. COX-2 as a multifunctional neuronal modulator. Nat Med 2001; 7(4), 414-415.
Go to original source...
Go to PubMed...
- Seo W., Oh H. Comparisons of acute physiological parameters influencing outcome in patients with traumatic brain injury and hemorrhagic stroke. Worldviews Evid Based Nurs 2009; 6(1), 36-43.
Go to original source...
Go to PubMed...
- Niizuma K., Endo H., Chan P. H. Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J. Neurochem. 2009; 109(1), 133-138.
Go to original source...
Go to PubMed...
- Wu L., Xiong X., Wu X., Ye Y., Jian Z., Zhi Z., Gu L. Targeting Oxidative Stress and Inflammation to Prevent Ischemia-Reperfusion Injury. Front. Mol. Neurosc. 2020; 13, 28.
Go to original source...
Go to PubMed...
- Herasymchuk N. M. 8-isoprostane as the main marker of oxidative stress. Zaporož. Med. Ž. 2018; 6(111), 853-859.
Go to original source...
- Czerska M., Zieliński M., Gromadzińska J. Isoprostanes - A novel major group of oxidative stress markers. Int. J. Occup. Med. Environ. Health. 2016; 29(2), 179-190.
Go to original source...
Go to PubMed...
- Miller E., Morel A., Saso L., Saluk J. Isoprostanes and Neuroprostanes as Biomarkers of Oxidative Stress in Neurodegenerative Diseases. Oxid. Med. Cell Longev. 2014; 2014, 572491.
Go to original source...
Go to PubMed...
- Patel M., Liang L. P., Roberts L. J. Enhanced hippocampal F2-isoprostane formation following kainate-induced seizures. J. Neurochem. 2001; 79, 1065-1069.
Go to original source...
Go to PubMed...
- Akcan A., Akyildiz H., Deneme M. A., Akgun H., Aritas Y. Granulomatous lobular mastitis: A complex diagnostic and therapeutic problem. World J. Surg. 2006; 30, 1403- 1409.
Go to original source...
Go to PubMed...
- Fürst R., Zündorf I., Dingermann T. New Knowledge About Old Drugs: The Anti-Inflammatory Properties of Cardiac Glycosides. Planta Med. 2017; 83(12-13), 977- 984.
Go to original source...
Go to PubMed...
- Singh T., Mishra A., Goel R. K. PTZ kindling model of epileptogenesis, refractory epilepsy, and associated comorbidities: relevance and reliability. Metab. Brain. Dis. 2021; 36(7), 1573-1590.
Go to original source...
Go to PubMed...
- Hock F. J. Drug Discovery and Evaluation: Pharmacological Assays. Springer International Publishing 2016.
Go to original source...
- Duveau V., Pouyatos B., Bressand K., Bouyssi'eres C., Chabrol T., Roche Y., Roucard C. Differential effects of antiepileptic drugs on focal seizures in the Intrahippocampal kainate mouse model of mesial temporal lobe epilepsy. CNS Neurosci. Ther. 2016; 22, 497-506.
Go to original source...
Go to PubMed...
- Oliveira M. S., Furian A. F., Royes L. F., Fighera M. R., Fiorenza N. G., Castelli M., Machado P., Bohrer D., Veiga M., Ferreira J., Cavalheiro E. A., Mello C. F. Cyclooxygenase-2/PGE2 pathway facilitates pentylenetetrazol-induced seizures. Epilepsy Res. 2008; 79(1), 14-21.
Go to original source...
Go to PubMed...
- Racine R. J. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 1972; 32, 281-294.
Go to original source...
Go to PubMed...
- Shaker M. E., Hamed M. F., Shaaban A. A. Digoxin mitigates diethylnitrosamine-induced acute liver injury in mice via limiting production of inflammatory mediators. Saudi Pharm. J. 2022; 30(3), 291-299.
Go to original source...
Go to PubMed...
- Kinoshita P. F., Yshii L. M., Vasconcelos A. R., Orellana A. M., Lima L., Davel A. P., Rossoni L. V., Kawamoto E. M., Scavone C. Signaling function of Na,K-ATPase induced by ouabain against LPS as an inflammation model in hippocampus. J. Neuroinflammation 2014; 11, 218.
Go to original source...
Go to PubMed...
- Chen J. Y., Chu L. W., Cheng K. I., Hsieh S. L., Juan Y. S., Wu B. N. Valproate reduces neuroinflammation and neuronal death in a rat chronic constriction injury model. Sci. Rep. 2018; 8(1), 16457.
Go to original source...
Go to PubMed...
- Itoh K., Taniguchi R., Matsuo T., Oguro A., Vogel C., Yamazaki T., Ishihara Y. Suppressive effects of levetiracetam on neuroinflammation and phagocytic microglia: A comparative study of levetiracetam, valproate and carbamazepine. Neurosci. Lett. 2019; 708, 134363.
Go to original source...
Go to PubMed...
- Raza M., Dhariwal M. A., Ageel A. M., Qureshi S. Evaluation of the anti-inflammatory activity of sodium valproate in rats and mice. Gen. Pharmacol. 1996; 27(8), 1395-1400.
Go to original source...
Go to PubMed...
- Vezzani A., Viviani B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology 2015; 96, 70-82.
Go to original source...
Go to PubMed...
- Mishchenko M., Shtrygol' S., Lozynskyi A., Khomyak S., Novikov V., Karpenko O., Holota S., Lesyk R. Evaluation of anticonvulsant activity of dual COX-2/5-LOX inhibitor darbufelon and its novel analogues. Sci. Pharm. 2021; 89(2), 22.
Go to original source...
- Dash P. K., Mach S. A., Moore A. N. Regional expression and role of cyclooxygenase-2 following experimental traumatic brain injury. J. Neurotrauma 2000; 17(1), 69-81.
Go to original source...
Go to PubMed...
- Tanaka S., Nakamura T., Sumitani K., Takahashi F., Konishi R., Itano T., Miyamoto O. Stageand region-specific cyclooxygenase expression and effects of a selective COX-1 inhibitor in the mouse amygdala kindling model. Neurosci. Res. 2009; 65(1), 79-87.
Go to original source...
Go to PubMed...
- Jiang J., Yang M. S., Quan Y., Gueorguieva P., Ganesh T., Dingledine R. Therapeutic window for cyclooxygenase-2 related anti-inflammatory therapy after status epilepticus. Neurobiol Dis 2015; 76, 126-136.
Go to original source...
Go to PubMed...
- Dey A., Kang X., Qiu J., Du Y., Jiang J. Anti-inflammatory small molecules to treat seizures and epilepsy: From bench to bedside. Trends Pharmacol. Sci. 2016; 37, 463-484.
Go to original source...
Go to PubMed...
- Yu Y., Nguyen D. T., Jiang J. G protein-coupled receptors in acquired epilepsy: Druggability and translatability. Prog. Neurobiol. 2019; 183, 101682.
Go to original source...
Go to PubMed...
- Sang N., Zhang J., Marcheselli V., Bazan N.G., Chen C. Postsynaptically synthesized prostaglandin E2 (PGE2) modulates hippocampal synaptic transmission via a presynaptic PGE2 EP2 receptor. J. Neurosci. 2005; 25, 9858-9870.
Go to original source...
Go to PubMed...
- Chen C., Bazan N. G. Endogenous PGE2 regulates membrane excitability and synaptic transmission in hippocampal CA1 pyramidal neurons. J. Neurophysiol. 2005; 93, 929-941.
Go to original source...
Go to PubMed...
- Bezzi P., Carmignoto G., Pasti L., Vesce S., Rossi D., Rizzini B. L., Pozzan T., Volterra A. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 1998; 391, 281-285.
Go to original source...
Go to PubMed...
- Nagib M. M., Yu Y., Jiang J. Targeting prostaglandin receptor EP2 for adjunctive treatment of status epilepticus. Pharmacol. Ther. 2020; 209, 107504.
Go to original source...
Go to PubMed...
- Savonenko A., Muñoz P., Melnikova T., Wang Q., Liang X., Breyer R. M., Andreasson K. Impaired cognition, sensorimotor gating, and hippocampal long-term depression in mice lacking the prostaglandin E2 EP2 receptor. Exp. Neurol. 2009; 217, 63-73.
Go to original source...
Go to PubMed...
- Yang H., Zhang J., Breyer R. M., Chen C. Altered hippocampal long-term synaptic plasticity in mice deficient in the PGE2 EP2 receptor. J. Neurochem. 2009; 108, 295- 304.
Go to original source...
Go to PubMed...
- Baran H., Heldt R., Hertting G. Increased prostaglandin formation in rat brain following systemic application of kainic acid. Brain Res. 1987; 404(1-2), 107-112.
Go to original source...
Go to PubMed...
- Takei S., Hasegawa-Ishii S., Uekawa A., Chiba Y., Umegaki H., Hosokawa M., Woodward D. F., Watanabe K., Shimada A. Immunohistochemical demonstration of increased prostaglandin F(2)alpha levels in the rat hippocampus following kainic acid-induced seizures. Neuroscience 2012; 218, 295-304.
Go to original source...
Go to PubMed...
- Steinhauer H. B., Anhut H., Hertting G. The synthesis of prostaglandins and thromboxane in the mouse brain in vivo. Influence of drug induced convulsions, hypoxia and the anticonvulsants trimethadione and diazepam. Naunyn Schmiedeberg's Arch. Pharmacol. 1979; 310(1), 53-58.
Go to original source...
Go to PubMed...
- Moghimipour E., Salami A., Monjezi M. Formulation and Evaluation of Liposomes for Transdermal Delivery of Celecoxib. Jundishapur J. Nat. Pharm. Prod. 2015; 10(1), e17653.
Go to original source...
Go to PubMed...
- Lugrin J., Rosenblatt-Velin N., Parapanov R., Liaudet L. The role of oxidative stress during inflammatory processes. Biol. Chem. 2014; 395(2), 203-230.
Go to original source...
Go to PubMed...
- Pearson J. N., Rowley S., Liang L. P., White A. M., Day B. J., Patel M. Reactive oxygen species mediate cognitive deficits in experimental temporal lobe epilepsy. Neurobiol. Dis. 2015; 82, 289-297.
Go to original source...
Go to PubMed...
- Pauletti A., Terrone G., Shekh-Ahmad T., Salamone A., Ravizza T., Rizzi M., Pastore A., Pascente R., Liang L. P., Villa B. R., Balosso S., Abramov A. Y., van Vliet E. A., Del Giudice E., Aronica E., Patel M., Walker M. C., Vezzani A. Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain 2019; 142(7), e39.
Go to original source...
Go to PubMed...
- Mu R. Z., Liu S., Liang K. G., Jiang D., Huang Y. J. A Meta-Analysis of Neuron-Specific Enolase Levels in Cerebrospinal Fluid and Serum in Children with Epilepsy. Front. Mol. Neurosci. 2020; 13, 24.
Go to original source...
Go to PubMed...
- Johannessen S. I., Landmark C. J. Antiepileptic drug interactions - principles and clinical implications. Curr. Neuropharmacol. 2010; 8(3), 254-267.
Go to original source...
Go to PubMed...
- Patsalos P. N., Fröscher W., Pisani F., van Rijn C. M. The importance of drug interactions in epilepsy therapy. Epilepsia 2002; 43(4), 365-385.
Go to original source...
Go to PubMed...
- Perucca E. Clinically relevant drug interactions with antiepileptic drugs. Br. J. Clin. Pharmacol. 2006; 61(3), 246-255.
Go to original source...
Go to PubMed...